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Abstract

It is well known that in many scalar models for the spread of a fitter
phenotype or species into the territory of a less fit one, the asymptotic
spreading speed can be characterized as the lowest speed of a suitable
family of traveling waves of the model. Despite a general belief that
multispecies (vector) models have the same property, we are unaware
of any proof to support this belief. The present work establishes this
result for a class of multispecies model of a kind studied by R. Lui [9]
and generalized by the authors [12, 8]. Lui showed the existence of
a single spreading speed c∗ for all species. In the systems in [12,
8], which include related continuous-time models such as reaction-
diffusion systems [12, 8], as well as some standard competition models,
it sometimes happens that different species spread at different rates,
so that there are a slowest speed c∗ and a fastest speed c∗f . It is shown
here that, for a large class of such multispecies systems, the slowest
spreading speed c∗ is always characterized as the slowest speed of a
class of traveling wave solutions.

1 Introduction.

It was shown by R. A. Fisher [3] that the scalar model

u,t = du,xx + ru(1− u)

for the spread of a more fit population into the territory of a less fit one has
traveling wave solutions of all speeds c ≥ 2

√
dr. Here the spatial density of

the fitter of two alleles at a single gene locus is given by ρu(x, t), where the
total allelic density ρ is assumed to be kept at a fixed constant value. Fisher
conjectured that the slowest wave speed c∗ = 2

√
dr is also the spreading

speed with which the region {x : u ∼ 1} where the fitter allele dominates
takes over the set {x : u(x, 0) = 0} where the fitter allele is initially absent.
This conjecture was proved by Kolmogorov, Petrowski, and Piscounov [7].
Similar results on the spreading speed as the slowest speed of a family of
traveling waves have been shown for a more general class of reaction-diffusion
models which includes Fisher’s quadratic model as a special case [1, 2]. The
dynamics of population spread and traveling waves can be extended beyond
reaction-diffusion models to more general formulations. For example, a large
class of scalar discrete-time, and possibly discrete-space, recursions of the
form

un+1 = Q[un], n = 0, 1, 2, .... (1.1)

was analyzed in [14]. For a subclass of these models, the spreading speed
can be characterized as the slowest speed of a traveling wave. Such a result
is useful, as it is often easier to calculate the slowest wave speed than to find
the spreading speed. The latter is the quantity of biological interest when
locally introduced populations are spreading into a new environment. Lui [9]
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extended the proof of the existence of a spreading speed to a multispecies
version of (1.1)

un+1 = Q[un], n = 0, 1, 2, .... (1.2)

Here the function un(x) is vector-valued, and its components can represent
the population densities at time n of interacting species or age classes. Such
a formulation can be applied to reaction-diffusion systems of the form

[ui],t = di[ui],xx − ei[ui],x + fi(u), i = 1, 2, ..., k,
u(0, x) = u0(x)

(1.3)

by letting Q be the so-called time-one map which takes the initial values
u0(x) into the value u(x, 1) at t = 1 of the solution u(x, t) of (1.3). The op-
erator Q in (1.2) may, however, correspond to a more general class of models.
For example, Q may be a nonlinear integral operator, or (1.2) may be an ex-
plicit finite difference equation. For the recursion (1.2), Lui [10] showed how
to define the spreading speed of a class of cooperative problems in popula-
tion ecology and epidemic theory. His hypotheses, however, allowed only for
a single nontrivial homogeneous equilibrium. Even though two-species com-
petitive interactions can be transformed to cooperative systems by a change
of variables, the assumption of a single nontrivial equilibrium prevents Lui’s
spreading speed result from being extended to situations involving competi-
tive interactions between species. These systems may have several nontrivial
boundary equilibria, which correspond to the absence of one or more of the
species [12]. A weakening of Lui’s hypotheses to include such nontrivial
boundary equilibria introduces a new possibility—different species may have
different spreading speeds [12, 8]. This can happen, for example, when there
are two coupled species, at least one of which exhibits a “strong Allee ef-
fect” (bistable dynamics). Such situations, with the possibility of multiple
spreading speeds, are characterized as follows: there is a slowest speed c∗

with the property that no species spreads more slowly than c∗, and at least
one species spreads at no faster speed, and there is a fastest speed c∗f such
that no species spreads at a speed greater than c∗f , and at least one species

spreads at no slower speed.1

The main result of the present work is the fact that the slowest spreading
speed c∗ can always be characterized as the slowest speed of a family of
traveling waves. This is done for the discrete-time model (1.2) in Section 3.
Section 4 shows how to extend this result to continuous-time models such as
(1.3). Example 4.1 shows that the fastest speed can actually be larger than
the slowest speed, so that components travel at different speeds. Section 5
is a summary of our results. In order to facilitate the flow of ideas, we have
put the more intricate proofs into the Appendix, which is Section 6.

The existence of a family of monotone waves of all speeds above a minimal
speed is known for some special cooperative monostable systems of reaction-
diffusion equations. (See, e.g., Section 3.4.2 of [11], [6], or [5].) In these cases,
our results show that the minimal wave speed is equal to the spreading speed.

1It was stated in our paper [12] that the fastest speed is the number c∗+, which will be
given by the formula (2.11). However, as stated near the end of Section 2, the proof of the
statement that at least one species spreads at a speed no slower than c∗+ is incomplete,
and we have had to resort here to showing how to define the possibly slower fastest speed
c∗f directly.
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2 Hypotheses and spreading speeds.

We begin with some notation. We shall use boldface Roman symbols like
u(x) to denote k-vector valued functions of the single variable x, and bold-
face Greek letters to stand for k-vectors, which may be thought of as constant
vector-valued functions. Here k is the number of species. We shall usually
think of u(x) as a function of x and the component number. Thus, for exam-
ple, u(x) ≥ v(x) means that ui(x) ≥ vi(x) for all i and x, max{u(x),v(x)}
means the vector-valued function whose ith component at x is
max{ui(x), vi(x)}, and lim supn→∞ u(n)(x) is the function whose ith compo-

nent at x is lim supn→∞ u
(n)
i (x). We shall, however, use the usual symbol

u >> v to mean that ui(x) > vi(x) for all i and x. We use the notation 0 for
the constant vector all of whose components are 0. If β >> 0 is a constant
k-vector, we define the set of functions

Cβ := {u(x) : u(x) continuous and 0 ≤ u(x) ≤ β}.

A function w(x) is said to be an equilibrium of Q if Q[w] = w, so that if
u` = w in the recursion (1.2), then un = w for all n ≥ `. We shall study the
evolution of the solution un of the recursion (1.2) from a u0 near an unstable
constant equilibrium Θ toward a stable equilibrium β >> Θ. By making
the change of dependent variable ûn = un −Θ if necessary, we shall assume
that the unstable equilibrium Θ from which the system moves away is the
origin 0. We define the translation operator

Ty[v](x) := v(x− y)

for any real number y. Finally we shall use the convention that in an expres-
sion of the form Q[u(x, r, s, · · · )](q(y, r, s, · · · )), x is a dummy variable. That
is, this expression is the result of applying the operator Q to the function of
x which is obtained by thinking of the other variables as fixed parameters,
and evaluating the resulting function at the point q(y, r, s, · · · ), which may
depend on a new independent variable y and the parameters. We shall make
the following assumptions about the operator Q in the recursion (1.2).

Hypotheses 2.1.

i. The operator Q is order preserving in the sense that if u and v are any
two functions in Cβ with v ≥ u, then Q[v] ≥ Q[u]. It follows that

if only ui is increased, then for any j 6= i the specific growth rate
({Q[u]}j−uj)/uj of the jth species is not decreased. While an increase
in ui may lower the specific growth rate of the ith species, this reduction
is not so profound that the population density of the next generation is
decreased. In biological terms, the dynamics are cooperative and there
is no overcompensation.

ii. Q[0] = 0, there is a constant vector β >> 0 such that Q[β] = β, and
if u0 is any constant vector with u0 >> 0, then the constant vectors
un obtained from the recursion (1.2) converge to β as n approaches
infinity. This hypothesis, together with (i) imply that Q takes Cβ into
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itself, and that the equilibrium β attracts all initial functions in Cβ
with uniformly positive components. In biological terms, β is a globally
stable coexistence equilibrium. There may also be other equilibria lying
between β and the extinction equilibrium 0, in each of which at least
one of the species is extinct.

iii. Q is translation invariant; i.e., Q[Ty[v]] = Ty[Q[v]] for all y. In biological
terms this means that the habitat is homogeneous, so that the growth
and migration properties are independent of location.

iv. If the sequence vn(x) in Cβ converges to v(x), uniformly on every bounded

set, then Q[vn] converges to Q[v], uniformly on every bounded set. This
means that for any fixed y, |Q[v](y)−Q[u](y)| is arbitrarily small, pro-
vided |v(x) − u(x)| is sufficiently small on a sufficiently long interval
centered at y. This and the following hypothesis are typically satisfied
for biologically reasonable models.

v. Every sequence vn(x) in Cβ has a subsequence vn`
such that Q[vn`

] con-

verges uniformly on every bounded set.

The first four of these hypotheses constitute a proper subset of Hypothe-
ses 2.1 of [12]. In order to permit the modeling of a prevailing wind, a
chemotactic gradient, or gravitation, we have dropped the hypothesis in [12]
that Q is reflection invariant. Reflection invariance would, for instance, re-
quire the advection coefficients ei in the reaction-diffusion model (1.3) to be
zero. Because we shall not discuss the approximation of the spreading speeds
by those of linear operators which was treated in [12] and [8], we have also
dropped all assumptions about the linearization of Q. We have, however,
assumed the global stability of β, which is a consequence of the hypotheses
of [12]. Hypothesis v is not required in [12], but it will be used in establishing
the existence of waves. Our principal tool is the following:

Lemma 2.1. (Comparison Lemma.) Let R be an order preserving oper-
ator. If un and vn satisfy the inequalities un+1 ≤ R[un] and vn+1 ≥ R[vn]
for all n, and if u0 ≤ v0, then un ≤ vn for all n.

Proof. The proof is by induction. If un ≤ vn, then un+1 ≤ R[un] ≤
R[vn] ≤ vn+1.

As in [12], we shall define two spreading speeds c∗ and c∗f for the recursion
(1.2). The slowest speed c∗ coincides with the speed of the same name in [12],
but the fastest speed c∗f may be less than the speed c∗+ of [12], and we shall
show that c∗f is the true fastest spreading speed. We begin by choosing a
continuous vector-valued function φ(x) with the properties

i. φ(x) is nonincreasing in x;
ii. φ(x) = 0 for all x ≥ 0;
iii. 0 << φ(−∞) << β.

(2.1)
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In order to define the slowest speed, we let a0(c; s) = φ(s), and define the
sequence an(c; s) by the recursion

an+1(c; s) = max{φ(s), Q[an(c; x)](s + c)}. (2.2)

The operator which takes an into the function on the right is again order
preserving. By definition, a1 ≥ φ = a0, and an induction argument shows
that for all n, an ≤ an+1 ≤ β, and an(c; s) is non-increasing in c and s.
Thus the sequence an converges to a limit function a(c; s) which is again
nonincreasing in c and s and bounded by β. An argument of Lui [9] shows
that the vectors a(c;±∞) are equilibria of Q. The first four of the Hy-
potheses 2.1 imply that a(c;−∞) = β. It is easily seen that when c is
sufficiently negative, a(c; s) ≡ β, or equivalently that a(c,∞) = β. The
function a(c; x) depends on the choice of the initial function φ. If we start

with a different function φ̂ with the properties (2.1), we obtain a different se-
quence ân(c; x) and a different limit function â(c; x). Hypothesis 2.1.ii shows

that limn→∞ an(c;−∞) = β >> φ̂(−∞). Hence, one can find an integer N

and a translation τ such that aN(c; x− τ) ≥ φ̂(x) = â0(c; x). The Compari-
son Lemma then shows that a(c; x− τ) ≥ â(c; x). In particular, we see that

a(c;∞) ≥ â(c;∞). By exchanging the roles of φ and φ̂ we also obtain the
inequality â(c;∞) ≥ a(c;∞). We conclude that â(c;∞) = a(c;∞), so that

the vector a(c;∞) is independent of the initial function φ. (2.3)

We define the slowest spreading speed c∗ ≤ ∞ by the equation

c∗ = sup{c : a(c;∞) = β}. (2.4)

This name is justified by the following Theorem, whose proof will be given
in the Appendix.

Theorem 2.1. There is an index j for which the following statement is true:
Suppose that the initial function u0(x) is 0 for all sufficiently large x, and
that there are positive constants 0 < ρ ≤ σ < 1 such that 0 ≤ u0 ≤ σβ for
all x and u0 ≥ ρβ for all sufficiently negative x. Then for any positive ε the
solution un of the recursion (1.2) has the properties

lim
n→∞

[
sup

x≥n(c∗+ε)

{un}j(x)

]
= 0 (2.5)

and

lim
n→∞

[
sup

x≤n(c∗−ε)

{β − un(x)}

]
= 0. (2.6)

That is, the jth component spreads at a speed no higher than c∗, and no
component spreads at a lower speed.
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In order to define the fastest speed c∗f , we choose a φ with the properties
(2.1), and let bn(x) be the solution of the recursion (1.2) with b0(x) = φ(x).
We define the function

B(c; x) = lim sup
n→∞

bn(x + nc).

Because Q is order-preserving and translation invariant, Q applied to a mono-
tone function is again monotone. Thus each bn(x + nc) is nonincreasing in
x and c, and hence the same is true of B(c; x). As in the case of the func-
tion a(c; x) we can show that B(c;∞) is independent of the choice of the
initial function φ as long as φ has the properties (2.1). We define the fastest
spreading speed c∗f by the formula

c∗f := sup{c : B(c;∞) 6= 0}. (2.7)

The name fastest speed is justified by the following Theorem, whose proof
will be given in the Appendix.

Theorem 2.2. There is an index i for which the following statement is true:
Suppose that the initial function u0(x) is 0 for all sufficiently large x, and
that there are positive constants 0 < ρ ≤ σ < 1 such that 0 ≤ u0 ≤ σβ for
all x and u0 ≥ ρβ for all sufficiently negative x. Then for any positive ε the
solution un of the recursion (1.2) has the properties

lim sup
n→∞

[
inf

x≤n(c∗f−ε)
{un}i(x)

]
> 0. (2.8)

and

lim
n→∞

[
sup

x≥n(c∗f+ε)

un(x)

]
= 0, (2.9)

That is, the ith component spreads at a speed no less than c∗f , and no com-
ponent spreads at a higher speed.

We see from (2.6) and (2.9) that

c∗f ≥ c∗. (2.10)

If c∗f = c∗, all components of un spread at the same rate, and we say that
the recursion (1.2) has the single speed c∗.

Remark. Equations (2.11) and (2.12) of [12] can be considered as a two-
sided version of Theorem 2.1 of the present paper. That is, they deal with
an initial function u0(x) which vanishes outside a bounded set. Equations
(2.10) and (2.13) of [12] are two-sided versions of the above Theorem 2.2 but
with the speed c∗f replaced by the quantity

c∗+ =: sup{c : a(c;∞) 6= 0}. (2.11)
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The Comparison Lemma shows that bn(x + nc) ≤ a(c; x), so that B(c; x) ≤
a(c; x). Therefore

c∗ ≤ c∗f ≤ c∗+, (2.12)

so that the property (2.9) implies the corresponding property of c∗+. However,
the proof in [12] of the property (2.8) with c∗f replaced by c∗+ is incomplete,
and we have been unable to complete it. It may well be true that c∗f < c∗+,
in which case (2.9) shows that the inequality (2.8) with c∗f replaced by c∗+
cannot be valid. However, we do not have an example to show that this
phenomenon actually occurs.

3 The characterization of c∗ as the slowest speed of a class of
traveling waves.

In this section, we show that the slowest spreading speed c∗ can be char-
acterized as the slowest speed of a class of traveling waves. A traveling
wave of speed c is a solution of the recursion (1.2) which has the form
un(x) = W(x − nc) with W(s) a function in Cβ. That is, the solution

at time n + 1 is simply the translate by c of its value at n. Our basic result
is the following.

Theorem 3.1. Suppose that Q satisfies the Hypotheses 2.1. If c ≥ c∗, there
is a nonincreasing traveling wave solution W(x−nc) of speed c with W(−∞)
= β and W(∞) an equilibrium other than β.

If there is a traveling wave W(x − nc) with W(−∞) = β such that for
at least one component i

lim inf
x→∞

Wi(x) = 0, (3.1)

then c ≥ c∗. If this property is valid for all components of W, then c ≥ c∗+ ≥
c∗f .

If there are no constant equilibria other than 0 and β in Cβ, then c∗+ =

c∗f = c∗, so that the recursion (1.2) has a single spreading speed.

Proof. We begin with the proof of the first statement. We choose a
fixed vector-valued initial function φ(s) with the properties (2.1). For each
positive number κ we define the sequence an(c, κ; s) by the recursion

an(c, κ; s) = max{κφ(s), Q[an(c, κ; x)](s + c)]},
a0(c, k; s) = κφ(s).

(3.2)

As shown in Section 2, an(c, κ; s) is nonincreasing in c and s and nonde-
creasing in n. As n→∞, an(c, κ; s) converges to a limit function a(c, κ; s),
which is nonincreasing in c and s. It is not difficult to see that a is lower
semicontinuous in c, so that when c ≥ c∗, a(c, κ,∞) is a constant equilibrium
ν other than β. By the property (2.3), ν is independent of κ.
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Because of Hypothesis 2.1.v, there is a sequence nj such that
Q[anj

(c, κ; x + c)](y) converges uniformly for y on bounded sets. Since an is
nondecreasing in n and Q is order preserving, the whole sequence
Q[an(c, κ; x + c)](y) converges uniformly on bounded sets. It follows from
(3.2) that the sequence an(c, κ; y) converges to a function a(c, κ; y) uniformly
for y in any bounded set. Hence a(c, κ; y) is a continuous function of y, and
by Hypothesis 2.1.iv we can take limits in (3.2) to see that

a(c, κ; s) = max{κφ(s), Q[a(c, κ; x)](s + c)}. (3.3)

We use | · | to denote the Euclidean norm. Since β is the only equilibrium
in the interior of Cβ, we can choose η > 0 so small that there is no constant

equilibrium other than β in the set {u ∈ Cβ : |β − u| ≤ η}. Since the

continuous function |β − a(c, κ; s)| increases from 0 to |β − ν| > η, the
intermediate value theorem shows that there exists `(κ) so that

|β − a(c, κ; `(κ))| = η. (3.4)

Because of the equation (3.3) and Hypothesis 2.1.v, there is a sequence κi→0
such that a(c, κi; x + `(κi)) converges uniformly for x on bounded sets to a
function W(x). Therefore we may take limits in (3.3) with κ = κi and
s = y + `(κi)− (n + 1)c and use the translation invariance of Q to find that

W(y − (n + 1)c) = Q[W(x− nc)](y). (3.5)

Therefore un(x) = W(x − nc) is a traveling wave solution of the recursion
un+1 = Q[un] with

|β −W(0)| = η. (3.6)

Letting y approach ±∞ in (3.5) shows that W(±∞) are equilibria. Because
|β −W(x)| is nondecreasing, the definition of η shows that W(−∞) = β,
while W(+∞) 6= β. Thus W has the properties in the first statement of the
Theorem.

To prove the second statement, suppose there is a wave W(x− nc) with
W(−∞) = β. Choose a function φ(s) with the properties (2.1) such that
φ(x) ≤ W(x). Define the sequence an and its limit a by means of (2.2) with
a0(c; x) = φ(x). Induction shows that an(c; x) ≤ W(x), which implies that
a(c; x) ≤ W(x), and therefore that a(c;∞) ≤ lim infx→∞W(x). Hence by
definition, c ≥ c∗ if (3.1) holds for at least one component, and c ≥ c∗+ ≥ c∗f
if (3.1) is valid for all components.

Finally we note that if the only constant equilibrium other that β in Cβ
is 0, then the first statement shows that there is a traveling wave W(x−nc∗)
with W(−∞) = β and W(∞) = 0. The second statement now shows that
c∗ ≥ c∗+ ≥ c∗f ≥ c∗, which establishes the last statement. Thus Theorem 3.1
is proved.

EXAMPLE 3.1. Consider the discrete-time model

pn+1(y) =
∫∞
−∞

(1 + ρ1)pn(x)

1 + ρ1[pn(x) + α1qn(x)]
k1(y − x)dx,

qn+1(y) =
∫∞
−∞

(1 + ρ2)qn(x)

1 + ρ2[qn(x) + α2pn(x)]
k2(y − x)dx.

(3.7)
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for the growth and spread of two species whose population densities at time
n and point x are pn(x) and qn(x). The model states that the species grow
and compete according to Beverton-Holt (or Verhulst) dynamics, and then
migrate with the migration kernels ki. That is, ki(x)dx is the probability that
the ith species moves by a distance between x and x + dx during one unit
of time. Each ki is thus a probability density. Because we wish to consider
such phenomena as prevailing winds, we do not require these kernels to be
symmetric. The parameters αi and ρi are all positive. It is easily verified
that the system (3.7) has the unpopulated equilibrium (0,0) and the two
monoculture equilibria (1,0) and (0,1). We shall consider the invasion of the
state (0,1) by the first species. We assume that

0 < α1 < 1,

so that, for p near zero and q near 1, the growth rate of the first species is
positive. That is, the state (0,1) is invadable. Then there is a coexistence
equilibrium (p+, q+), where

p+ =
1− α1

1− α1α2

, q+ =
1− α2

1− α1α2

(3.8)

if and only if 0 < α2 < 1. We shall discuss the transition from the monocul-
ture state (0, 1) to the target state

(p∗, q∗) =

{
(p+, q+) if 0 < α2 < 1

(1, 0) if α2 ≥ 1.

The change of variables un(x) = pn(x), vn(x) = 1 − qn(x) converts the
competitive system (3.7) into the cooperative system

un+1(y) =
∫∞
−∞

(1 + ρ1)un(x)

1 + ρ1[α1 + un(x)− α1vn(x)]
k1(y − x)dx,

vn+1(y) =
∫∞
−∞

α2ρ2un(x) + vn(x)

1 + ρ2[1− vn(x) + α2un(x)]
k2(y − x)dx.

(3.9)

We shall assume the continuity condition

lim
η→0

∫ ∞

−∞
|ki(x + η)− ki(x)|dx = 0 for i = 1, 2, (3.10)

which implies that the family of function Q[u] with u in Cβ is equicontinuous.

Then Ascoli’s theorem implies Hypothesis 2.1.v. It is easily verified that the
system (3.9) satisfies the Hypotheses 2.1 with

β = (p∗, 1− q∗).

The corresponding spreading speeds c∗ and c∗f give the speeds at which
changes in p and q spread to the right into a population which is initially
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in the monoculture state (0,1) for all sufficiently large x. We observe that
in addition to the equilibria 0 and β, the system (3.9) has the equilibrium
(0,1), which corresponds to the extinction state p = q = 0. This equilibrium
lies in Cβ if and only if α2 ≥ 1.

Theorem 3.1 shows that the slowest speed c∗ of this transition can be
characterized as the smallest value of c for which there is a monotone traveling
wave W(x−nc)) of the system (3.9) with W(−∞) = β and W(∞) equal to
either (0,0) or (0,1). If α2 < 1, then (0,1) is not in Cβ, and hence W(∞) =

(0, 0) and c∗+ = c∗f = c∗, so that there is a single spreading speed.

4 Traveling waves for continuous-time systems.

We shall extend the statement of Theorem 3.1 to well-posed continuous-time
problems such as the reaction-diffusion system

u,t = Du,xx − Eu,x + f(u)
u(0, x) = u0(x).

(4.1)

Here
D := diagonal(d1, · · · , dk)

and
E := diagonal(e1, · · · , ek)

are constant diagonal matrices. The mobilities di are positive, but the ad-
vections ei may have any signs. For such a system there is a family of time-t
maps Qt, which are defined by the fact that Qt[u0](x) := u(x, t). That is, Qt

takes the initial values of u to the values of u at time t. For obvious reasons,
this family forms a semigroup in the sense that

Qt1 [Qt2 [v]] = Qt1+t2 [v] (4.2)

for all positive t1 and t2, and

lim
t↘0

Qt[v] = v. (4.3)

A traveling wave of a continuous-time recursion u(x, t1+t2) = Qt2 [u(·, t1)](x)
is defined to be a solution which does not change its shape in time. That is,
W(x− ct) is a continuous-time traveling wave of speed c if and only if

Qt[W](x) = W(x− ct) (4.4)

for all positive t. We can use Theorem 3.1 to obtain the existence of traveling
waves for continuous-time systems.

Theorem 4.1. Suppose that Qt is a family of operators on the set Cβ with

the properties (4.2) and (4.3) such that each Qt with t > 0 satisfies the
Hypotheses 2.1. Let c∗ be the slowest spreading speed of the recursion (1.2)
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with Q replaced by Q1. Then for every c ≥ c∗ there is a traveling wave
W(x − ct) which is nonincreasing in x and for which W(−∞) = β while
W(∞) is an equilibrium other than β.

If there is a traveling wave W(x− ct) with W(−∞) = β such that for at
least one component i

lim inf
x→∞

Wi(x) = 0,

then c ≥ c∗. If this property is valid for all components of W, then c ≥ c∗+ ≥
c∗f .

If there is a positive t0 such that the recursion (1.2) with Q replaced by Qt0

has no constant equilibria other than 0 and β in Cβ, then c∗+[Qt] = c∗f [Qt] =

c∗[Qt] = tc∗[Q1] for all t > 0, so that the recursion has a single spreading
speed.

The proof will be found in the Appendix.

It is, of course, useful to know when this Theorem can be applied to the
reaction-diffusion system (4.1). We have the following result.

Theorem 4.2. Suppose that the system (4.1) has the following properties:

i. f(0) = 0, and there is a β >> 0 such that f(β) = 0 which is minimal in
the sense there is no constant ν other than 0 and β such that f(ν) = 0
and 0 << ν ≤ β.

ii. The system (4.1) is cooperative; i.e., each fi(α) is nondecreasing in all
components of α with the possible exception of the ith one.

iii. f does not depend explicitly on either x or t, and the diagonal matrices
D and E are constant.

iv. f(α) is continuous and has uniformly bounded piecewise continuous first
partial derivatives for 0 ≤ α ≤ β, and it is differentiable at 0. The
Jacobian matrix f ′(0), whose off-diagonal entries are nonnegative, has
a positive eigenvalue whose eigenvector has positive components.

v. The mobilities di, which are the diagonal and only nonzero entries of D,
are all positive.

Then for every c ≥ c∗ the system (4.1) has a nonincreasing traveling wave
solution W(x−ct) of speed c with W(−∞) = β and W(∞) a zero of f other
than β.

If there is a traveling wave W(x− ct) with W(−∞) = β such that for at
least one component i

lim inf
x→∞

Wi(x) = 0,

then c ≥ c∗. If this property is valid for all components of W, then c ≥ c∗+ ≥
c∗f .

If the only zeros of f(u) in Cβ are 0 and β, then c∗+ = c∗f = c∗, so that

the system (4.1) has a single spreading speed.

12



Proof. The first four of the Hypotheses 2.1 for the time-t map Qt follow
as in Section 4 of [12]. Condition (v) implies that the system is uniformly
parabolic, so that for each t > 0 the functions Qt[v] with v ∈ Cβ form an

equicontinuous family. Hypothesis 2.1.v then follows from Ascoli’s theorem.
Thus we can apply Theorem 4.1. It is easily verified that W(x − ct) has
sufficient differentiability to permit it to be substituted in the differential
equation. The equation Qt[W](x) = W(x − ct) thus implies that u(x, t) =
W(x− ct) solves the system (4.1) with the initial condition u(x, 0) = W(x).
This proves the existence of waves for all c ≥ c∗. The remaining statements
follow from the corresponding statements of Theorem 4.1. Thus Theorem 4.2
is established.

EXAMPLE 4.1. Consider the cooperative two-species Lotka-Volterra
model

ut = d1uxx + r1u(1− u + a1v)

vt = d2vxx + r2v(1− v + a2u).
(4.5)

We assume that all parameters are positive constants, and that

a1a2 < 1.

Then there are four equilibria: The extinction state (0,0), the two monocul-
ture states (1,0) and (0,1), and the coexistence equilibrium (u∗, v∗) where

u∗ = (1 + a1)/(1− a1a2), v∗ = (1 + a2)/(1− a1a2).

It is easily verified that the system (4.5) satisfies the hypotheses of Theo-
rem 4.2 with β = (u∗, v∗).

We consider the simultaneous invasion of the extinction state (0,0) by the
two species. Because v ≥ 0, the Comparison Lemma shows that u cannot
spread more slowly than it would if v were replaced by 0 in the first equation
of (4.5). The resulting equation is Fisher’s equation, and we conclude that

c∗f ≥ 2
√

d1r1. (4.6)

Similarly we see that because u ≤ u∗, v cannot spread more rapidly than
it would if u were replaced by u∗ in the second equation of (4.5). Since the
resulting equation is turned into Fisher’s equation by the change of variable
w = v/v∗, we conclude that

c∗ ≤ 2
√

d2r2v∗. (4.7)

Thus if the parameters have the property that

d1r1 > d2r2v
∗, (4.8)

then we must have
c∗f > c∗.

Then for any c such that c∗ ≤ c < c∗f , the traveling wave of speed c
given by Theorem 4.1 must have the property that W(∞) is an equilibrium
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whose u-coordinate is positive, because u spreads more quickly than c. Thus
W(∞) = (1, 0). To obtain such a wave, we make the change of variable
û = u− 1, so that in the new coordinates

ût = d1ûxx + r1(û + 1)(−û + a1v)

vt = d2vxx + r2v(1 + a2 − v + a2û).
(4.9)

This system satisfies the hypotheses of Theorem 4.2 with β̂ = (u∗ − 1, v∗).

Moreover, there are no nonnegative constant equilibria other than 0 and β̂
in C ˆβ

. Thus it has a single spreading speed ĉ∗, and there is a traveling wave

Ŵ(x−ct) with Ŵ(∞) = β̂ and Ŵ(∞) = 0 if and only if c ≥ ĉ∗. Because we
have such a wave for c = c∗, we conclude that c∗ ≥ ĉ∗. On the other hand, we
observe that the function (Ŵ1(x− ĉ∗t)+1, Ŵ2(x− ĉ∗t)) is a traveling wave of
the system (4.5), which implies that ĉ∗ ≥ c∗. Thus we find that c∗ = ĉ∗. We
have shown that if c∗f > c∗ and the u-component spreads more quickly than
the v-component, the slowest speed c∗ of the problem (4.5) can be obtained
as the single spreading speed ĉ∗ of the system (4.9). Symmetry shows that
when c∗f > c∗ and the v-component spreads more quickly, then c∗ can be
obtained as the single spreading speed for the invasion of the state (0,1). A
sufficient condition for this is given by interchanging the indices 1 and 2 and
replacing v∗ by u∗ in (4.8).

There are also parameter values for which the problem (4.5) has a single
speed. Suppose, for instance, that

d2 = d1, r2 = r1, and a2 = a1 < 1.

If u(x, 0) = v(x, 0), the equations show that u(x, t) = v(x, t), and hence that

ut = d1uxx + r1u[1− (1− a1)u],

Since this equation is turmed into Fisher’s equation by the substitution w =
(1− a1)u, we see that u and v spread at the speed 2

√
d1r1. Since any initial

values can be bounded below by the initial data with both components equal
to min{u(x, 0), v(x, 0)} and above by the initial data with both components
equal to max{u(x, 0), v(x, 0)}, the comparison lemma shows that u and v
always spread at this rate. That is c∗f = c∗ = 2

√
d1r1. When c ≥ 2

√
d1r1

the Fisher equation has a traveling wave w(x − ct), and we observe that
W(x− ct) := ((1− ai)

−1w(x− ct), (1− ai)
−1w(x− ct)) is a traveling wave of

our system. Note that W(−∞) = β and W(∞) = 0.

For other parameter values for which c∗f = c∗, Theorem 4.2 shows that
for c ≥ c∗ there is a monotone wave W(x − ct) with W(−∞) = β, but we
do not know which of the values (0,0), (1,0), or (0,1) W(∞) has.

EXAMPLE 4.2. Consider the Lotka-Volterra competition model

p,t = d1p,xx − e1p,x + r1p(1− p− a1q),
q,t = d2q,xx − e2q,x + r2q(1− q − a2p),

(4.10)
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where di, ri, and ai are positive constants, and the advections ei are constants.
This system always has the two monoculture equilibria (0,1) and (1,0) and
the unpopulated equilibrium (0,0). We shall assume that 0 < a1 < 1 so that
the monoculture state (0, 1) is invadable. Then there is also a coexistence
equilibrium

(p+, q+) :=

(
1− a1

1− a1a2

,
1− a2

1− a1a2

)
,

if and only if a2 < 1. We define the target state

(p∗, q∗) =

{
(p+, q+) if 0 < a2 < 1

(1, 0) if a2 ≥ 1.

The change of variables u = p, v = 1 − q converts the competition system
(4.10) into the system

u,t = d1u,xx − e1u,x + r1u(1− a1 − u + a1v),
v,t = d2v,xx − e2v,x + r2(1− v)(a2u− v),

(4.11)

which is cooperative in the biologically realistic range u ≥ 0, 0 ≤ v ≤ 1. It is
easily verified that this system satisfies the conditions of Theorem 4.2 with
β = (p∗, 1− q∗). We observe that in addition to the equilibria 0 and β this
system has an equilibrium at (0,1), and that this equilibrium is in Cβ if and

only if a2 ≥ 1.

The spreading speeds c∗ and c∗f of (4.11) give the speeds at which the
components of a solution of (4.10) which is initially equal to the monocul-
ture (0,1) for all sufficiently large x spread toward the target state (p∗, q∗).
Theorem 4.2 characterizes the slowest speed c∗ as the smallest value of c for
which there is a monotone traveling wave of (4.11) with W(−∞) = β and
W(∞) equal to either (0, 0) or (0,1). When a2 < 1, (0,1) is not in Cβ, so

that W(∞) = (0, 0) and c∗+ = c∗f = c∗. That is, there is a single spreading
speed.

5 Summary.

This paper focuses on extending to a large class of cooperative multi-species
models a piece of folklore which is well known for many scalar models.
Namely, the asymptotic speed at which a new and more fit species invades
the territory of an established set of species can be characterized as the lowest
speed of a suitable family of traveling waves of the model. (A traveling wave
is a solution of the equation which has the same shape at each time but which
is translated by its speed c per unit time.) Because the population changes
of different species in a multi-species model may spread at different speeds,
this extension is a rather challenging problem. Theorem 3.1 establishes the
desired result for the slowest spreading speed c∗ of a discrete-time model.
Theorems 4.1 and 4.2 show that the same result is true for continuous-time
models, and, in particular, for reaction-diffusion models.
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Earlier works have analyzed the population spreading speed for coopera-
tive population models under particular restrictions on the dynamics [9, 10],
or under the assumption of symmetric dispersal [12, 8]. We have shown that
such restrictions and assumptions can be relaxed to allow for more general
dynamics and asymmetric dispersal.

While the basic results involve cooperative dynamics, a simple change
of variables sometimes translates the biologically prevalent case of compe-
tition into cooperation. Thus we are able to consider traveling wave solu-
tions for competitive dynamics in two-species discrete-time (perhaps integro-
difference) models (Section 3) and continuous-time (perhaps partial differen-
tial equation) models (Section 4). While our hypotheses permit the system
to have a weak Allee effect, they do exclude a strong Allee effect for the
system as a whole.

6 Appendix

Proof of Theorem 2.1. Because u0 vanishes for large x and is bounded
away from β, we can choose a function φ(x) with the properties (2.1) and
a number η such that u0(x) ≤ φ(x − η). By noting that the right-hand
side of the recursion (2.2) is bounded below by Q[an](s + c) and using the
Comparison Lemma, we find that un(x) ≤ an(c; x − η − nc). Since an is
nonincreasing in x, we see that

sup
x≥n(c+

1
2

ε)

un(x) ≤ an(c; 1
2
nε− η) ≤ a(c; 1

2
nε− η).

Thus,

lim sup
n→∞

 sup
x≥n(c+

1
2

ε)

un(x)

 ≤ a(c;∞).

If we let c = c∗+ 1
2
ε, the right-hand side is a constant equilibrium other than

β. Therefore it has at least one zero component, and we find (2.5) for this
component.

In order to derive (2.6), we temporarily assume that Q has the additional
properties

a. If α is a constant vector with 0 ≤ α << β, then Q[α] << β.

b. There is a number γ with the property that if u(x) = 0 for x ≥ η, then
Q[u](x) = 0 for x ≥ η + γ.

Choose a function φ with the properties (2.1) and with φ(x) ≤ u0(x), and
let c < c∗. By the definition of c∗, an(c; 0) increases to β. Therefore there
is an index N such that aN(c; 0) >> φ(−∞). Since both aN and φ are
nonincreasing and φ vanishes for x ≥ 0, it follows that aN(c; x) >> φ(x).
Let bn be the solution of the recursion

bn+1(x) = Q[bn](x)
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with b0(x) = φ(x). Since φ ≤ u0, the Comparison Lemma shows that
un(x) ≥ bn(x) for all n. We see from Hypothesis 2.1.ii that bn(−∞) con-
verges to β. Moreover, by the above Property (a), aN(c;−∞) << β. Thus
we can find an M ≥ N such that bM(−∞) >> aN(−∞). Since Property
(b) implies that aN(c; x) vanishes for x ≥ N(γ + c), there is a number τ such
that

bM(x) ≥ aN(c; x + τ).

Since an is nondecreasing in n, an(c; x) >> φ(x) for n ≥ N , so that the
maximum in the recursion (2.2) must be equal to Q[an](x + c). Therefore,
bn(x + nc) and an(c; x + τ) satisfy the same recursion for n ≥ N . The
Comparison Lemma then shows that bn(x + nc) ≥ an+N−M(c; x + τ) when
n ≥ M −N . Therefore

un(x + nc) ≥ bn(x + nc) ≥ an+N−M(c; x + τ).

Since an is nonincreasing, we find that if we take c = c∗ − ε,

sup
x≤n(c∗−ε)

{β − un(x)} ≤ {β − an+N−M(c∗ − ε; τ)}.

By the definition of c∗, the right-hand side approaches zero as n goes to
infinity, and this yields (2.6). We have thus proved (2.6) under the additional
assumption that Q has the above properties (a) and (b). If this is not the

case, the following construction produces an operator Q̂ which approximates
Q from below, and has these properties. Define a “cutoff function” ζ(s) as a
smooth scalar function with the properties

i. ζ(s) is nonnegative and nonincreasing for s ≥ 0;

ii. ζ(s) = 0 for s ≥ 1;

iii. ζ(s) = 1 for 0 ≤ s ≤ 1
2
.

Choose two positive parameters α and δ, and define

Q̂[v](y) := min{Q[ζ(|y−x|/α)v(x)](y), (1−δ)Q[ζ(|y−x|/α)v(x)](y)+δv(y)}.

It is easily seen that Q̂ has the properties (a) and (b) and satisfies the Hy-

potheses 2.1, Q̂[v] ≤ Q[v]. Moreover, Q̂[v] approaches Q[v] as δ goes to zero
and α approaches infinity. As in the proof of Lemma 5.1 of [15], applying

the above proof to Q̂ and taking these limits yields (2.6), and this finishes
the proof of Theorem 2.1.

Proof of Theorem 2.2. To prove (2.8), we choose a φ which has the
properties (2.1) and satisfies the inequality φ ≤ u0. By the Comparison
Lemma we have un(x) ≥ bn(x). Since bn is nonincreasing in x,

inf
x≤n(c∗f−ε)

un(x) ≥ bn(n(c∗f − ε)).
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Then

lim sup
n→∞

[
inf

x≤n(c∗f−ε)
un(x)

]
≥ B(c∗f − ε; 0) ≥ B(c∗f − ε;∞). (6.1)

By definition, the right-hand side is not 0. Hence some component, say
the ith component, is positive, and we obtain (2.8). To prove (2.9), we
choose a function φ with the properties (2.1) and the additional property that
φ(x−η) ≥ u0(x) for some η. By the Comparison Lemma un(x) ≤ bn(x−η).
Since bn is nonincreasing, we find that

sup
x≥n(c∗f+ε)

un(x) ≤ bn(n(c∗f + 1
2
ε) + 1

2
nε− η) ≤ bn(n(c∗f + 1

2
ε) + τ)

for any τ , provided n is sufficiently large. Thus

lim sup
n→∞

[
sup

x≥n(c∗f+ε)

un(x)

]
≤ B(c∗f + 1

2
ε; τ)

with τ arbitrary. We let τ go to infinity to see that

lim sup
n→∞

[
sup

x≥n(c∗f+ε)

un(x)

]
≤ B(c∗f + 1

2
ε;∞) = 0. (6.2)

Since un ≥ 0, this proves the statement (2.9). Thus Theorem 2.2 is proved.

Proof of Theorem 4.1. The equation(4.4) shows that for any fixed
positive t, a continuous-time traveling wave W(x − ct) is a traveling wave
of speed ct of the recursion (1.2) with Q replaced by Qt. Therefore the
second and third statements of the Theorem follow immediately from the
corresponding statements of Theorem 3.1.

To prove the existence of the traveling wave when c ≥ c∗, we first note
that {Qp/q}q = Qp = {Q1}p when p and q are positive integers, where {Qt}`

denotes the `th iterate of the operator Qt. It then follows from Theorem 2.1
that the slowest spreading speed cp/q of the operator Qp/q is just (p/q)c∗,
where c∗ is the slowest spreading speed of Q1. The proof of Theorem 3.1 then
shows that for each c ≥ c∗ and for each rational t there is a nonincreasing
traveling wave Wt(x− nct) of the operator Qt which satisfies the equation

|β −Wt(0)| = η, (6.3)

where η is so small that β is the only constant equilibrium which satisfies the
condition 0 ≤ |β −Wt(0)| ≤ η. We see from Hypotheses 2.1.v and 2.1.iv
that there is a sequence ri→∞ such that W2−ri (x) converges uniformly on
bounded sets to a function W(x) which is again nonincreasing and satisfies
the normalization (6.3). Since W2−ri is a traveling wave for all Qt for which
t is a multiple of 2−ri , Qt[W](x) = W(x− ct) for every t which is a fraction
whose denominator is a power of 2. Let t be an arbitrary positive number,
and m any positive integer. Then one can write

t = km2−m − rm
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where km is a positive integer and 0 ≤ rm < 2−m. Then by (4.2) and the
above observation

Qt[W](x)−W(x− ct) = {Qt[W]−Qrm [Qt[W]]}
+ {W(x− c(t + rm))−W(x− ct)}.

We let m approach infinity, so that rm goes to zero. The property (4.3) shows
that the first term on the right approaches zero, and the continuity of W
shows that the second term also goes to zero. Therefore

Qt[W](x) = W(x− ct),

so that W is a nonincreasing continuous-time traveling wave of speed c.
Because W is nonincreasing and satisfies the condition (6.3), we conclude as
before that W(−∞) = β and W(∞) is an equilibrium other than β. Thus
Theorem 4.1 is proved.
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