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Abstract

Long-time asymptotic properties of the solutions of the system

ut = f(u),

where f(u) is positive homogeneous of degree p > 1, are studied. We also consider
the corresponding linearly perturbed system

ut = f(u) + Au.

It is shown that if A = αI, then the global existence of all solutions for one value
of α implies that the same property holds for all α, and that all solutions converge
to the origin when α < 0. On the other hand, it is shown that the addition of a
matrix for which Au is inward in the sense that u · Au < 0 for u 6= 0 can turn
a p-homogeneous system all of whose solutions are bounded into one which has
solutions which blow up in a finite time.
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1 Introduction

We shall say that the d-dimensional system of ordinary differential equations

du

dt
= f(u) (1.1)

is p-homogeneous if the d components of f are positive homogeneous functions of degree
p of the d-vector u. That is, f(λu) = λpf(u) when λ ≥ 0. In this paper we shall study the
qualitative features of the solution set of such a system with p > 1, and of the systems
obtained by adding a linear function of u to the right-hand side.

Some properties of general p-homogeneous equations will be stated and proved in
Section 2. In particular, sufficient conditions for the origin to be a global attractor, as
well as for the system to have solutions which blow up in a finite time will be given. More
complete results can be obtained in the special case when the number of components
d is two, and these results will be derived in Section 3. Sections 4 to 6 are devoted to
studying systems whose right-hand side is the sum of a p-homogeneous function and a
linear function. Theorem 4.1 gives a rather complete result when the linear term is a
multiple of u. The case of a general linear function turns out to be considerably more
difficult, and we only obtain some partial results. In particular, Proposition 4.2 shows
that the condition that the radial component of the linear vector field is uniformly inward
is not sufficient to preserve the property that the origin is a global attractor. Section
5 again deals with the case of two components. Here we find a sufficient condition for
the linear perturbation to preserve the property that the origin is a global attractor for
the p-homogeneous equation (1.1). Theorem 6.1 of Section 6 provides a tool for proving
that linear terms added to the right-hand side of a two-dimensional p-homogeneous
system can produce solutions which blow up. Example 6.1 uses this result to obtain a
p-homogeneous system all of whose solutions are bounded such that an arbitrarily small
linear perturbation produces solutions which blow up in a finite time. This is a simpler
example of a phenomenon found in [2]. Example 6.2 gives a finite-difference analog of an
example of Mizoguchi, Ninomiya, and Yanagida [1] which shows that the introduction of
unequal diffusions in a continuous-space reaction-diffusion system can produce blowup.

2 On solutions of p-homogeneous equations

Throughout this work we shall assume that the vector-valued function f(u) in (1.1) is
continuously differentiable and positive homogeneous of degree p > 1.

We observe that if one defines the polar coordinates

r = |u|

ω = r−1u,
(2.1)
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and uses the homogeneity of f , the system (1.1) becomes

dω

dt
= rp−1h(ω)

d ln r

dt
= rp−1`(ω),

where
`(ω) := ω · f(ω) and h(ω) := f(ω)− `(ω)ω. (2.2)

If we introduce the artificial time variable τ =
∫
rp−1dt, we obtain the equivalent

system

dω

dτ
= h(ω) (2.3)

d ln r

dτ
= `(ω) (2.4)

dt

dτ
= r1−p, (2.5)

in which the equation (2.3) represents a flow on Sd−1 which is uncoupled from the other
equations. Its orbits are the radial projections of the orbits of (1.1) to the unit sphere.
Once one has a solution of this system, one can use quadrature to solve the equation
(2.4) for ln r and then (2.5) for t. This gives a parametric representation of the solutions
of (1.1).

The following scaling result will sometimes be used:

Lemma 2.1 If u(t) is a solution of (1.1) and ρ is any positive constant, then the func-
tion v(t) := ρu(ρp−1t) is also a solution of (1.1).

Proof. The chain rule and the p-homogeneity of f show that

vt = ρput = ρpf(u(ρp−1t)) = f(v).

Since v/|v| = u/|u| and |v| = ρ|u|, the phase space of (1.1) is invariant under
positive dilation, and all dilates of an orbit have the same radial projection on Sd−1.

The above decomposition permits us to study the p-homogeneous system (1.1) in
terms of the solutions of the system (2.3). As with any system, one first looks at the
equilibrium points of (2.3). It is obvious from (2.2) that an equilibrium point ω∗ of this
system is characterized by the fact that

f(ω∗) = `(ω∗)ω∗. (2.6)

It is useful to know the behavior of solutions whose radial projections are equal to or
approach an equilibrium point ω∗.
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Theorem 2.1 Let u(t) be a solution of (1.1) whose radial projection ω = u/|u| is either
equal to or converges as τ goes to infinity to an equilibrium point ω∗ which satisfies (2.6).
Then

a. if `(ω∗) > 0, u blows up in a finite time;

b. if `(ω∗) < 0, u approaches the origin as t→∞;

c. if `(ω∗) = 0 so that f(ω∗) = 0, then all points of the line u = rω∗ are equilibria
of (1.1), but a solution in which ω(t) 6= ω∗ can have any asymptotic behavior,
depending on the behavior of the function `(ω) = ω · f(ω) near the point ω∗.

Proof. We see from (2.3) that if the initial value of ω is ω∗, then ω = ω∗ for all t.
Thus the solution takes the form u = r(t)ω∗, where

rt = `(ω∗)rp

r(0) = r0.

Since p > 1, r blows up in a finite time if `(ω∗) > 0, goes to zero if `(ω∗) < 0, and
remains constant if `(ω∗) = 0. This proves the Theorem when ω0 = ω∗.

When ω0 6= ω∗, we see from (2.4) and (2.5) that

dr1−p

dt
= −(p− 1)`(ω(τ(t))). (2.7)

By hypothesis, `(ω(τ(t))) converges to `(ω∗). Thus if `(ω∗) > 0, there is a t1 such that
the right-hand side is bounded above by −(p− 1)`(ω∗)/2 when t ≥ t1. Therefore

r(t)1−p ≤ r(t1)
1−p − (p− 1)`(ω∗)

2
(t− t1) (2.8)

for t ≥ t1. Since p > 1, r must become infinite at a finite value of t.
If `(ω∗) < 0, the right-hand side of (2.7) is bounded below by −(p − 1)`(ω∗)/2 for

t ≥ t1, and one obtains (2.8) with ≤ replaced by ≥. Since `(ω∗) < 0, this shows that r
approaches zero as t goes to infinity.

In order to treat the case `(ω∗) = 0, we observe that the right-hand sides of (2.3) and
(2.4) are independent of each other in the following sense: Choose any smooth scalar
function `(ω) and any smooth tangent vector field h(ω) on Sd−1. Then if one defines
the p-homogeneous vector field

f(u) := |u|p
[
h

(
u

|u|

)
+ `

(
u

|u|

)
u

|u|

]
, (2.9)

the functions ` and h are given by (2.2).
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Suppose then that we have a solution ω̂(τ) ∈ Sd−1 of the system

dω

dτ
= h(ω)

with ω · h(ω) ≡ 0 such that limτ→∞ ω̂(τ) = ω∗. Then h(ω∗) = 0. The mapping
τ → ω̂(τ) is one-to-one. Choose any smooth positive function r̂(τ) such that r̂′(τ)/r̂(τ)
converges to zero as τ →∞. Define a function `(ω) on Sd−1 by setting

`(ω̂(τ)) =
r̂′(τ)

r̂(τ)
,

and then extending ` off the range of ω̂(τ) in a smooth manner. Define the p-homogene-
ous vector field f by (2.9). Then ω̂(τ) satisfies the system (2.3), and r̂(τ) satisfies (2.4).
We may take r̂(τ) to be any function of τ with limτ→∞ r̂

′(τ)/r̂(τ) = 0. For instance,

if we choose r̂ = e2(τ2+1)1/4
, then (2.5) shows that t remains bounded, while r̂ goes to

infinity. Thus the solution blows up in finite time. If, on the other hand, we choose
r̂ = e−2(τ2+1)1/4

, r̂ goes to 0, and t goes to infinity. That is u(t) goes to the origin as
t→∞. If r̂ ≡ 1, we may take `(ω) ≡ 0, and the solution remains bounded but does not
approach zero. Almost any other behavior of the solution can be obtained by a judicious
choice of r̂(τ). Thus all parts of Theorem 2.1 have been established.

Example 2.1 Consider the 3-dimensional 5-homogeneous system

du1

dt
= (u2

1 + u2
2 + u2

3) {−(2u2
1 + u2

2 + 3u2
3)u2 + [α(u2

1 + u2
2 + u2

3) + βu2
3]u1}

du2

dt
= (u2

1 + u2
2 + u2

3) {(2u2
1 + u2

2 + 3u2
3)u1 + [α(u2

1 + u2
2 + u2

3) + βu2
3]u2}

du3

dt
= γ(u2

1 + u2
2)u

3
3 + (u2

1 + u2
2 + u2

3)[α(u2
1 + u2

2 + u2
3) + βu2

3]u3

(2.10)

where α, β, and γ are constant parameters. Then the equation (2.4) is

[ln r]τ = α+ βω2
3 + γω4

3(1− ω2
3), (2.11)

while the system (2.3) is

dω1

dτ
= −(2ω2

1 + ω2
2 + 3ω2

3)ω2 − γω4
3(1− ω2

3)ω1

dω2

dτ
= (2ω2

1 + ω2
2 + 3ω2

3)ω1 − γω4
3(1− ω2

3)ω2

dω3

dτ
= γω3

3(1− ω2
3)

2.

(2.12)

It is easily checked that the equilibrium points of the system (2.12) are ω1 = ω2 = 0,
ω3 = ±1. We shall assume that

γ > 0,
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so that all solutions for which ω3 6= 0 converge to one of these points.
At these points ` = α+β, Thus nonzero solutions of (2.10) for which the initial value

of u3 is not zero blow up in a finite time if α+ β > 0, and go to 0 if α+ β < 0,
To treat the case where ` = 0, we set β = −α. To find the behavior of r on such a

solution, we see from (2.11) with β = −α and from the equation for the derivative of ω3

that
d ln r

dω3

=
α+ γω4

3

γω3
3(1− ω2

3)
.

If α + γ 6= 0, the right-hand side behaves like (α + γ)ω3/[γ(1 − ω2
3)] near ω3 = ±1, so

that
r = O

(
(1− ω2

3)
−(α+γ)/(2γ)

)
.

This shows that such solutions approach zero when α < −γ, and are unbounded when
α > −γ. To see the degree of unboundedness, we use (2.5) to see that

dt

dω3

=
r−4

γω3
3(1− ω2

3)
2

= O
(
(1− ω2

3)
−2+2(α+γ)/γ

)
.

Thus, the solutions blow up in a finite time if α = −β > −γ/2, grow up to infinity as
t→∞ if −γ < α = −β ≤ −γ/2 and converge to the origin if α = −β < −γ.

Another interesting class of solutions of (2.3) is the periodic solutions. We have the
following result.

Theorem 2.2 Let ω = ω̂(τ) be a nonconstant solution of the system (2.3) on Sd−1

which is periodic of some period Π. Define

Γ :=

∫ Π

0

`(ω̂(τ))dτ. (2.13)

Let u(t) be any solution of (1.1) whose radial projection is either equal to or converges
to the closed curve {ω : ω = ω̂(τ)}. Then

a. If Γ > 0, the solution u blows up in a finite time;

b. If Γ < 0, u approaches zero as t→∞;

c. If Γ = 0, then for any prescribed positive number T there is a solution u(T ; t) of (1.1)
which is periodic of period T in t, but a solution whose radial projection approaches
the closed curve ω = ω̂ can have any asymptotic behavior, which depends on the
behavior of `(ω) near the closed orbit.
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Proof. We see from the equation (2.4) that if the radial projection of the solution u
to Sd−1 coincides with the curve ω = ω̂(t), then

ln r(τ + Π) = ln r(τ) + Γ , (2.14)

so that the function ln r−Γτ/Π is Π-periodic. Therefore the same is true of the function

z(τ) := e−Γ τ/Πr(τ). Then (2.5) shows that

dt

dτ
= e−(p−1)Γ τ/Πz(τ)1−p, (2.15)

where z is positive and Π-periodic, and hence bounded above and below by positive
numbers. If Γ > 0, the right-hand side is thus bounded by a constant multiple of a
negative exponential in τ , which implies that t remains bounded as τ → ∞. On the
other hand, the recursion (2.14) shows that r goes to infinity as τ →∞, and this proves
the finite-time blowup.

If Γ < 0, the recursion (2.14) shows that r goes to zero as τ → ∞, while (2.15)
implies that t→∞ as τ →∞. Thus u approaches the origin as t→∞.

Finally, if Γ = 0, the recursion (2.14) shows that r is periodic of period Π in τ , and
the equation (2.5) shows that

t(τ + Π) = t(τ) +

∫ Π

0

r1−pdτ.

It follows that u is periodic of period
∫ Π

0
r1−pdτ > 0 in t. We now see from Lemma 2.1

that v(t) := ρu(ρp−1t) is also a periodic solution, but its period is ρ1−p ∫ Π

0
r1−pdτ . We

can always find a value of ρ which makes this period equal to a prescribed positive value
T . This completes the proof for the case in which the radial projection of u(t) coincides
with the orbit ω = ω̂(t).

We now consider a solution whose radial projection converges to a periodic solution.
Let Ω be the orbit of the periodic solution ω̂(τ). Construct a neighborhood N of this
closed curve on Sd−1 with the property that, for each τ ∈ [0,Π), h(ω̂(τ)) · h(ω) > 0 for
all ω in that component P (τ) of the intersection of the plane [ω − ω̂(τ)] · h(ω̂(τ)) = 0
with N which contains ω̂(τ). By hypothesis, there is a τ1 such that ω(τ) ∈ N for τ ≥ τ1.
We see from the above condition that once ω(τ) enters and remains in N , it must follow
ω̂ around. By continuity, we can choose N so small that if ω(τ) lies on the set P (τ2) for
some τ2, it must return to that set before τ increases by 2Π. Moreover, if Γ > 0, we see
from (2.4) that if N is sufficiently small, ln r must increase by at least Γ/2 by the time
ω returns to the plane. It immediately follows that r increases to infinity exponentially
as τ →∞. Then (2.5) shows that t remains bounded, so that u experiences finite-time
blowup. This finishes the proof of Part (a) of the Theorem.

If Γ < 0, the same argument shows that if N is sufficiently small, ln r decreases by
at least |Γ |/2 whenever τ increases by some number which is at most 2Π. This shows
that r goes to 0, which proves Part (b).
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To prove Part (c), we again construct the neighborhood N in which ω(τ) follows ω̂(τ)
around. As in the proof of Part (c) of Theorem 2.1, we show that we can find an `(ω)
such that any prescribed function r̂(τ) for which r̂′/r̂ converges to zero is a solution of
(2.4). The corresponding solution can have almost any behavior from finite-time blowup
to convergence to the origin.

Example 2.2 We return to the 3-dimensional system (2.10) of Example 2.1. We see
from the third equation of (2.12) that ω3 remains fixed not only if ω3(0) = ±1, but also if
ω3 is initially 0. We then see from the first two equations that the corresponding solution
of (2.12) has the form (cosφ(τ), sinφ(τ), 0) where φ(τ) solves the equation

dφ

dτ
= 2 cos2 φ+ sin2 φ.

It is easily seen that φ is increased by 2π when τ increases by
Π :=

∫ 2π

0
[2 cos2 ψ + sin2 ψ]−1dψ, so that ω(τ) is periodic of period Π.

The last equation of (2.12) shows that for any solution whose initial value does not
make the right-hand side zero, ω3(τ) converges to zero if and only if

γ < 0.

We shall assume this from now on.
Since `(ω) is the right-hand side of (2.11), we see that on the periodic solution ` = α,

so that Γ is just α times the τ -period. Thus Theorem 2.1 shows that if α < 0, all solutions
with u2

1 + u2
2 6= 0 converge to the origin, which if α > 0, these solutions blow up in a

finite time.
When α = 0, Γ = 0, so that (2.10) has periodic solutions. To study solutions whose

radial projections converge to a periodic solution, we observe that when α = 0,

d ln r

dω3

=
β + γω2

3(1− ω2
3)

γω3(1− ω2
3)

2
,

which behaves like β/(γω3) near ω3 = 0. Thus when β 6= 0,

r = O(|ω3|β/γ)

when ω3 approaches zero. Since γ < 0, this shows that when β < 0, the solutions
converge to the origin, while when β > 0, |u| goes to infinity. Since by (2.5)

dt

dω3

=
r−4

γω3
3(1− ω2

3)
2
,

which behaves like |ω3|−3−4β/γ, we find that if 0 < β ≤ −γ/2, |u| goes to infinity as
t→∞, while if β > −γ/2, the solutions blow up in a finite time.
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Finally, we study a limit cycle of (2.3) and the orbits which converge to it. A limit
cycle is an ordered set of zeros of h together with orbits of (2.3) which connect these
zeros in a cyclic fashion.

Theorem 2.3 Every solution whose orbit has a radial projection to Sd−1 which coincides
with or converges to a limit cycle converges to 0 if and only if ` < 0 on the set of zeros
of h on the limit cycle.

Proof. We see from Theorem 2.1 that all solutions which correspond to a part of the
limit cycle converge to 0 if and only if ` < 0 at all equilibria on the limit cycle. Thus,
this condition is necessary. On the other hand, if the condition holds, then

∫
`dτ over

each of the connecting orbits of the limit cycle is −∞. Then just as in the proof of
Theorem 2.2 we see that

∫
`dτ over one rotation along an orbit which converges to the

limit cycle will eventually be uniformly negative, and hence a corresponding solution
also approaches the origin.

The following criterion for the origin to be a global attractor for the system (1.1) is
a direct corollary of the preceding theorems.

Theorem 2.4 Suppose that the omega limit set of every solution of the system (2.3) is
either an equilibrium point, a periodic solution, or a limit cycle. Then a necessary and
sufficient condition for the origin to be a global attractor for the system (1.1) is that

1. the equation (2.6) never holds with `(ω∗) ≥ 0, and

2. the constant Γ defined by (2.13) is strictly negative for every periodic solution of
(2.3).

Proof. Parts (a) and (c) of Theorems 2.1 and 2.2, and Theorem 2.3 show the necessity
of these conditions. Parts (b) of Theorems 2.1 and 2.2, and Theorem 2.3 show their
sufficiency.

Remark. The hypothesis that omega limit sets contain only equilibrium points,
periodic solutions, and limit cycles is automatically satisfied when d = 2 or 3.

3 2-dimensional p-homogeneous systems.

If the number d of independent variables is greater than 2, the flow (2.3) on the unit
sphere Sd−1 may be quite complicated. When d = 3, there may be equilibrium points,
periodic solutions, and limit cycles. If d > 3, there may even be strange attractors.
It is even difficult to resolve cases where `(ω∗) = 0 at a zero of h or where Γ = 0
on a periodic solution, except for some special problems such as the one found in the
Examples of Section 2. The situation is simpler when d = 2, because the unit circle S1
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is a simpler set than Sd−1 with d > 1. We shall investigate this simplification in this
Section.

We consider the system
du1

dt
= f1(u1, u2)

du2

dt
= f2(u1, u2),

(3.1)

where the functions f1 and f2 are p-homogeneous in (u1, u2). The unit circle S1 is easily
parametrized in terms of a single variable θ by setting

ω =

(
cos θ
sin θ

)
.

Since the vector field h(ω) is orthogonal to ω, it can be written in the form

h(cos θ, sin θ) = h(θ)

(
− sin θ
cos θ

)
.

The scalar function h(θ) is easily seen to be given by the formula

h(θ) = −f1(cos θ, sin θ) sin θ + f2(cos θ, sin θ) cos θ.

Then the system (2.3) becomes the single equation

θτ = h(θ). (3.2)

If we abuse the notation by writing `(θ) instead of `(cos θ, sin θ), then

`(θ) = f1(cos θ, sin θ) cos θ + f2(cos θ, sin θ) sin θ,

and the equation (2.4) becomes
[ln r]τ = `(θ). (3.3)

The equation (2.5) remains unchanged. We observe that the functions h and ` are
both periodic of period 2π. We are now ready to state a more complete version of
Theorems 2.1, and 2.2.

Theorem 3.1 1. If h(θ) has at least one zero, then

a. all solutions of the system (3.1) converge to (0, 0) if and only if `(θ∗) < 0
whenever h(θ∗) = 0.

b. There is an unbounded solution of (3.1) if and only if there is a zero θ∗ of h for
which either `(θ∗) > 0, or `(θ∗) = 0 and there is a number θ0 6= θ∗ such that
(θ∗ − θ0)h(θ) > 0 at θ0 and at all points between θ0 and θ∗, and, if `(θ∗) = 0,
the function

I(θ0, θ) :=

∫ max{θ0,θ}

min{θ0,θ}

`(φ)

|h(φ)|
dφ (3.4)

is not bounded from above.
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c. There is a solution which stops existing after a finite time if and only if for
some zero θ∗ of h the condition of Statement (b) is satisfied, and the integral∫ max{θ0,θ∗}

min{θ0,θ∗}

e−(p−1)I(θ0,ψ)

|h(ψ)|
dψ

is finite. This can only happen if I(θ0, θ) is unbounded at θ∗. If in addition,
I(θ0, θ) converges to infinity as θ approaches θ∗, then the solution rω blows
up in a finite time.

2. If h(θ) is never zero, then every solution of (3.2) is periodic. As in Section 2, let

Γ =

∫ 2π

0

`(θ)

|h(θ)|
dθ

be the increase in ln r during one period, Then if Γ > 0, all solutions of (3.1) blow
up in a finite time, if Γ < 0, all solutions of (3.1) approach zero, and if Γ = 0, all
solutions of (3.1) are periodic.

Proof. Let (r0, θ0) be the values of a solution at t = 0. We first consider the case
where h(θ0) 6= 0. We see from (3.2) that if h(θ0) > 0, then θ increases to the nearest
zero θ∗ of h. If h(θ0) < 0, then θ(τ) decreases to the nearest zero of h. In either case we
see that (θ∗− θ0)h(θ) > 0 at θ0 and for all θ between θ0 and θ∗. Since dθ/dτ 6= 0 on this
set, we can write

d(ln r)

dθ
=

(ln r)τ
θτ

=
`(θ)

h(θ)

We integrate this equation to obtain the fact that

ln r = ln r0 + I(θ0, θ),

where the function I is defined by (3.4). Thus

r = r0e
I(θ0,θ). (3.5)

We can thus express r in terms of the parameter θ. In order to have a parametric
solution of (3.1), we also need to express t as a function of θ. We see from the equation
θt = rp−1h(θ) that

t =

∫ max{θ0,θ}

min{θ0,θ}

r
−(p−1)
0 e−(p−1)I(θ0,ψ)

|h(ψ)|
dψ. (3.6)

All the statements of Part (1) of the Theorem can be read off from (3.5) and (3.6) when
h(θ0) 6= 0, and from Theorem 2.1 when h(θ0) = 0.

In order to prove Part (2) of the Theorem, we observe that when h has no zeros, the
parametric solution given by (3.5) and (3.6) is defined for all initial values θ0 and for all
θ. Moreover, because `(φ)/|h(φ)| is periodic of period 2π, we see that I(θ0, θ) increases
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by Γ whenever h(θ0)θ is increased by 2πh(θ0). Thus, if Γ > 0, I increases linearly in
|θ|, so that r is unbounded, and (3.6) shows that r blows up in finite time. If Γ < 0,
the same reasoning shows that r goes to zero. Finally, if Γ = 0, then I(θ0, θ) is periodic
of period 2π in θ. Hence, r is a periodic function of θ, and the period of r(t) in t is
obtained by setting θ = θ0 + 2π in (3.6). Thus the proof of Theorem 3.1 is complete.

The following example shows that |u(t)| need not converge to infinity on an un-
bounded solution.

Example 3.1 Consider the 7-homogeneous system

du1

dt
=
[
(u2

1 + u2
2) sin(

√
u2

1 + u2
2/u2)− u2

√
u2

1 + u2
2 cos(

√
u2

1 + u2
2/u2)

]
u2

1u
3
2 − u7

2

du2

dt
=
[
(u2

1 + u2
2) sin(

√
u2

1 + u2
2/u2)− u2

√
u2

1 + u2
2 cos(

√
u2

1 + u2
2/u2)

]
u1u

4
2 + u1u

6
2.

Then

`(θ) =

[
sin

(
1

sin θ

)
− sin θ cos

(
1

sin θ

)]
cos θ sin3 θ,

and
h(θ) = sin6 θ.

Since h ≥ 0 and h has zeros at 0 and π, we see that if 0 < θ0 < π, then θ(t) increases
to π. If −π < θ0 < 0, then θ increases to 0. It is easily verified that

I(θ0, θ) =
cos(1/ sin θ)

sin θ
− cos(1/ sin θ0)

sin θ0

.

As θ approaches either π or 0, the formula r = r0e
I(θ0,θ) shows that r(t(θ)) has the limit

superior ∞ and the limit inferior 0.

4 Linear perturbations of p-homogeneous systems.

In this section we shall consider systems of the form

ut = f(u) + αAu (4.1)

where u and f are d-vector-valued functions, f(u) is positive homogeneous of degree
p > 1 in u, and A is a constant matrix. We are interested in the large-time asymptotics
of solutions of this equation. We begin with the special case where A is the identity
matrix, so that the linear perturbation is purely radial. That is, we are looking at the
family of equations

ut = f(u) + αu (4.2)

with α a constant. In this case we have a rather complete result.
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Theorem 4.1 1. If for one value of α all solutions of the system (4.2) exist for all
time, then the same is true of this equation for any other value of α. Moreover,
in this case, all solutions of (4.2) with α < 0 approach the origin as t→∞.

2. If the equation (4.2) with one value of α has a solution which blows up in a finite
time, then the equation (4.2) with any α has such a solution.

3. If the system (4.2) with α = 0 has a solution which does not converge to 0 as t→∞,
then for every positive α the equation (4.2) has an unbounded solution.

Proof. It is easily verified that if u(0)(t) satisfies the equation (4.2) with α = 0, then
for any α the function

u(α)(t) := eαtu(0)

(
eα(p−1)t − 1

α(p− 1)

)
(4.3)

is the solution of the equation (4.2) with the same initial value as u.
The elementary theory of differential equations shows that a solution of (4.2) ceases

to exist at a finite value tB of t if and only if lim supt↗tB
|u(t)| = ∞. Thus if u(0) ceases

to exist at time tB, we see from the fact that the argument of u(α) in (4.3) goes to infinity
with t when α > 0 and to 1/[(−α)(p − 1)] when α < 0 that u(α) also ceases to exist in
a finite time as long as

α > − 1

(p− 1)tB
.

We see from Lemma 2.1 that the function v(0) := ρu(0)(ρp−1t) is again a solution of the
equation with α = 0. If u(0) ceases to exist at time tB, then this function ceases to
exist at time ρ1−ptB. Then the solution of (4.2) defined by (4.3) with u(0) replaced by
v(0) ceases to exist in finite time, provided α > −ρp−1/(p− 1)tB. For any given α, this
inequality is true when ρ is chosen to be sufficiently large. Thus if (4.2) with α = 0 has
a solution which ceases to exist in finite time, the same is true of (4.2) with any α.

It follows that if all solutions of (4.2) with some value α0 of α are defined for all
t > 0, the same is true of the equation with α = 0. We see from this and (4.3) that for
any α all solutions of (4.2) are defined for all t. Moreover, we observe that if α < 0, the
argument of u(0) in (4.3) remains bounded, while the factor in front approaches zero.
Thus every solution of (4.2) with α < 0 approaches zero. This is Statement (1).

Since a solution blows up at a finite time tB if and only it ceases to exist at tB and
r goes infinity as t increases to tB, the above argument can be extended by replacing
“ceases to exist” by “blows up”. This gives Statement (2).

Finally, we observe that if α > 0 and lim supt→∞ |u(0)(t)| > 0, then by (4.3)

lim sup
t→∞

|u(α)(t)| = lim sup
t→∞

[
eαt
∣∣∣∣u(0)

(
eα(p−1)t − 1

α(p− 1)

)∣∣∣∣] = ∞,

which is Statement (3). This completes the proof of Theorem 4.1.
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Remark. This Theorem says that the property that all solutions are globally de-
fined is not changed by the addition of a multiple of u to the right-hand side of a
p-homogeneous system. In contrast, the system (2) of [2] with α = β = 0 is an example
of a nonhomogeneous system all of whose solutions converge to the origin, for which
adding any negative multiple of u to the right-hand side produces solutions which blow
up in a finite time.

One might expect to be able to extend the result of Theorem 4.1 to matrices A with
the property that ω · Aω > 0 for all ω ∈ Sd−1. This property says that the radial
component of Aω is always positive. In fact, one can obtain the following Proposition.

Proposition 4.1 Suppose that the function f has the property

ω · f(ω) ≤ 0 for all ω ∈ Sd−1. (4.4)

Also suppose that
ω · Aω > 0 for all ω ∈ Sd−1. (4.5)

Then the origin is a global attractor for the system (4.1) when α < 0, but not when
α > 0.

Proof. We see from (4.5) and continuity that there is a positive constant σ such that

u · A(u) ≥ σ|u|2

for all u. The equation (4.1), this inequality, and (4.4) imply that when α < 0,

1

2

d|u|2

dt
≤ ασ|u|2,

so that |u|2 approaches zero exponentially.
When α > 0, it is easily seen that the real parts of all the eigenvalues of αA are

positive, so that the origin is a repeller rather than attractor. This proves the Proposi-
tion.

The trouble with this proposition is that, as Theorem 2.4 shows, the system (1.1)
can have the origin as a global attractor for many f for which the condition (4.4) is not
satisfied. We shall show that if the condition (4.4) is violated, that is, if there is a unit
vector ω̂ so that

ω̂ · f(ω̂) > 0, (4.6)

then there is a matrix A which satisfies (4.5) such that the origin is not globally stable
for (4.1) with α < 0. In order to state this result, we define the skew-symmetric matrix
S by defining its entries

Sij := fi(ω̂)ω̂j − ω̂ifj(ω̂). (4.7)
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Proposition 4.2 Suppose that there is at least one unit vector ω̂ for which the inequality
(4.6) is satisfied, so that the inequality (4.4) is violated. Define the matrix S by (4.7).
Then the matrix

A := ω̂ · f(ω̂)I + S (4.8)

has the property (4.5), but the origin is not a global attractor for the system (4.1) for
any α 6= 0.

Proof. It is easily seen that ω · Aω = ω̂ · f(ω̂) > 0. Therefore A has the property
(4.5). We also see from the definitions of A and S that

Aω̂ = f(ω̂).

The p-homogeneity of f then shows that if α < 0, then the vector

û := (−α)1/(p−1)ω̂

satisfies the equation
f(û) + αAû = 0.

That is, û is an equilibrium point of (4.1). Since the solution of (4.1) which starts at û
does not go to the origin, the origin is not a global attractor.

When α > 0, the skew symmetry of S shows that the real parts of all the eigenvalues
of αA are equal to ω̂ · f(ω̂) > 0. We conclude that the origin is a repeller and therefore
not a global attractor. Thus the statement of the Proposition is established.

Example 4.1 Consider the two-dimensional 3-homogeneous system

du1

dt
= u3

1 − u2
1u2 − u1u

2
2

du2

dt
= u3

1 + u2
1u2 − u3

2.

(4.9)

Then the right-hand side of (3.2) is

h(θ) = f2(cos θ, sin θ) cos θ − f1(cos θ, sin θ) sin θ = cos2 θ, (4.10)

and the right-hand side of (3.3) is

`(θ) = f1(cos θ, sin θ) cos θ + f2(cos θ, sin θ) sin θ = cos2 θ − sin2 θ. (4.11)

The equilibria of (3.2) are θ∗ = ±π/2. At these points ` is negative. There are no
periodic solutions of (3.2), and so by Theorem 2.4 the origin is a global attractor for
(4.9). On the other hand, the condition (4.6) is clearly satisfied for θ̂ = 0. The matrix
(4.8) is then

A =

(
1 −1
1 1

)
.
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Thus Theorem 4.2 states that the origin is not a global attractor for the system

du1

dt
= u3

1 − u2
1u2 − u1u

2
2 + α(u1 − u2)

du2

dt
= u3

1 + u2
1u2 − u3

2 + α(u1 + u2).

(4.12)

for any α other than 0.

We see from Theorem 4.1 that the asymptotic behaviors of the solutions of the system
(4.2) with α = α1 and α = α2 are the same as long as α1 and α2 have the same signs.
The following Lemma shows that this property is also valid for the more general system
(4.1). It is proved by a simple application of the chain rule and the p-homogeneity of f.

Lemma 4.1 If u(α1) is a solution of the equation (4.1) with α = α1 and if α1α2 > 0,
then

u(α2)(t) :=

(
α2

α1

)1/(p−1)

u(α1)

(
α2t

α1

)
is a solution of (4.1) with α = α2.

This Lemma shows that the asymptotic properties of solutions are the same for any
two values of α which have the same sign. Thus, it is sufficient to consider the three
values α = −1, 0, and 1. In particular, the size of α does not matter, so that for some
purposes α cannot be considered a perturbation parameter. One must, instead, look at
A as perturbation of a scalar matrix σI, for which we have the properties of Theorem 4.1.

5 A linear perturbation result in the two-dimensional

case.

It seems to be difficult to obtain a perturbation result for a system of more than two
dependent variables. This is partly due to the difficulty of classifying flows on Sd−1 when
d > 2. As we have already seen in section 3, the unit circle S1 is easily parametrized by
an angle variable θ by setting ω = (cos θ, sin θ). The system

ut = f(u) + αAu (5.1)

can be written in the form

d ln r

dt
= rp−1`(θ) + αP (θ)

dθ

dt
= rp−1h(θ) + αQ(θ),

(5.2)
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where, as before,

`(θ) = f1(cos θ, sin θ) cos θ + f2(cos θ, sin θ) sin θ,
h(θ) = −f1(cos θ, sin θ) sin θ + f2(cos θ, sin θ) cos θ,

while

P (θ) = (cos θ, sin θ) · A
(

cos θ
sin θ

)
,

Q(θ) = (− sin θ, cos θ) · A
(

cos θ
sin θ

)
.

Thus P and Q are homogeneous polynomials of degree two in cos θ and sin θ.

Theorem 5.1 Suppose that the origin is a global attractor for the two-dimensional sys-
tem ut = f(u), and that the matrix A satisfies the condition

ω · Aω ≥ σ > 0 for ω ∈ S1. (5.3)

Then there exists a positive constant ε which depends only on properties of the functions
`(θ) and h(θ) such that the inequality

|Q(θ)| ≤ σε for all θ,

implies that the origin is a global attractor for the system (5.1) when α < 0, but not
when α > 0.

Proof. Because the inequality ω ·Aω ≥ σ implies that the real parts of all eigenvalues
of A are at least σ, the origin is a repeller when α > 0.

We see from Lemma 4.1 that the behavior of the solutions when α < 0 is the same
as that for α = −1. Therefore we shall study only this case. Proposition 4.1 shows that
if ` ≤ 0 for all θ, the origin is a global attractor, so that the conclusion of the Theorem
is true. Hence we assume without loss of generality that

`max := max[`(θ)] > 0.

We write (5.1) in the the polar form (5.2). The condition (5.3) shows that P (θ) ≥ σ > 0.
We see from the first equation of (5.2) that if R is a positive number such that

Rp−1 <
σ

`max

(5.4)

then (ln r)t is uniformly negative for r ≤ R. Thus the set r ≤ R belongs to the basin of
attraction of the origin. Consequently, a solution u which does not approach the origin
must satisfy r > R for all t. We consider two cases:
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Case 1. Suppose that h(θ) is never zero. Then |h| ≥ |h|min > 0, and when α = 0,
every solution of (3.2) is periodic. We see from Theorem 2.2 that because the origin is
a global attractor for this equation,

Γ =

∫ 2π

0

`(θ)

|h(θ)|
dθ < 0.

Assume for the time being that h is positive, so that h ≥ |h|min. We see from the
θ-equation in (5.2) that if µ is any constant with 0 < µ < 1 and we require that

|Q(θ)| ≤ µRp−1|h|min, (5.5)

then as long as r remains above R, θ increases at a uniformly positive speed.
We see from (5.2) that

d ln r

dθ
=
rp−1`(θ)− P (θ)

rp−1h(θ)−Q(θ)
.

Thus

ln r(2π[k + 1])− ln r(2πk) =

∫ 2π[k+1]

2πk

(`/h)− r1−p(P/h)

1− r1−p(Q/h)
dθ.

By (5.5) the denominator is bounded below by 1 − µ when r ≥ R. Since P ≥ 0 and
h > 0, we then obtain the upper bound

ln r(2π[k + 1])− ln r(2πk) <

∫ 2π[k+1]

2πk

(`/h)

1− r1−p(Q/h)
dθ

=

∫ 2π[k+1]

2πk

`

h

{
1 +

r1−p(Q/h)

1− r1−p(Q/h)

}
dθ

≤
∫ 2π[k+1]

2πk

{
`

h
+

µ

1− µ

|`|
h

}
dθ.

Thus if µ is so small that
µ

1− µ

∫ 2π[k+1]

2πk

|`|
h
dθ < −Γ , (5.6)

then ln r(2π[k + 1]) − ln r(2πk) is bounded above by a negative number which is inde-
pendent of k. By summing the bound for the difference of ln r with respect to k, we see
that for any solution for which r(0) > R, ln r becomes equal to lnR in a finite time. As
we have seen, r then converges to 0.

In view of the definition (5.5) of µ, the inequality (5.6) is equivalent to

max |Q| < Rp−1|h|min

−
∫ 2π

0

(`/h)dθ∫ 2π

0

([|`| − `]/h)dθ

.

18



We satisfy the inequality (5.4) by choosing R = [σ/(2`max)]
1/(p−1). Thus we have proved

the Theorem with

ε = |h|min

−
∫ 2π

0

(`/h)dθ

2`max

∫ 2π

0

([|`| − `]/h)dθ

for the case h > 0.
When h < 0 everywhere, the change of variable φ = −θ gives a system of the form

(5.2) with `(θ) and P (θ) replaced by `(−φ) and P (−φ), and with h(θ) and Q(θ) replaced
by −h(−φ) and −Q(−φ). Since −h = |h| > 0, the above proof gives the same result
with h replaced by |h| in the formula for ε. Thus we have established the Theorem when
h is never zero.

Case 2. Suppose that h(θ) has at least one zero. By Theorem 2.4 and the hypothesis
that the origin is a global attractor for the equation (5.2) with α = 0, we see that
`(θ) < 0 on the closed bounded set N := {θ : h(θ) = 0}. Define

γ := −1

2
max
θ∈N

`(θ) > 0,

the open set
Sγ := {θ : `(θ) < −γ},

and the open set

Ŝγ :=
⋃
{components C of Sγ which intersect N}.

Then Ŝγ consists of finitely many disjoint open intervals and contains N . Therefore

|h| > 0 on the closed bounded set S1 \ Ŝγ. Since `max > 0, this closed bounded set is not
empty. Hence |h| takes on its minimum

η := min
θ 6∈Ŝγ

|h(θ)| > 0

on this set. We assume that

|Q(θ)| ≤ Rp−1η

2
. (5.7)

Then the second equation of (5.2) shows that when θ(t) ∈ S1 \ Ŝγ, it either increases or
decreases at a speed at least Rp−1η/2, depending on the sign of h there. Thus θ reaches
a component of Sγ in a uniformly bounded time. θ may remain in this component, or,
if h has the same sign on both sides of the component, it may leave this component and
enter another one in a uniformly bounded time, and so forth. Because P > 0,

dr1−p

dt
= −(p− 1)(`− r1−pP ) ≥ (p− 1)γ in Ŝγ.
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Thus if θ remains in one component sufficiently long, then r reaches the value R, after
which we know that r decreases to 0.

If h takes on both positive and negative values outside Ŝγ, then at least one of the
components has the property that h is positive at its left boundary point and negative
at its right boundary. We then see from (5.7) that the same is true of dθ/dt. This means
that once θ enters this component, it cannot leave it, so that r is eventually reduced to
R, and then converges to zero. It is easily seen that no matter where θ starts, it may
keep entering and exiting components, but eventually either r falls to R or θ hits the
component with the above property and then stays there. Thus in all cases r goes to
zero if (5.7) is valid and h takes on both positive and negative values outside Ŝγ.

Suppose now that h has only one sign on the complement of Ŝγ. Then when θ
leaves one component it always increases or always decreases to the next component.
We consider two possibilities:

a. If h(θ) takes on both positive and negative values, and if θ̂ is outside Ŝγ, then the

function sgn[h(θ̂)]h(θ) takes on a negative minimum value at some point θmin of Ŝγ. If

|Q(θ)| ≤ 1

2
Rp−1|h(θmin)|,

we see that sgn[h(θ̂)] (h(θmin)− r1−pQ(θmin)) < 0. Hence θ cannot get beyond θmin when
r ≥ R, and hence gets stuck in some component of Ŝγ. We again conclude that r is
eventually reduced to R, and hence approaches 0.

b. The alternative is that h has at least one zero θ∗, but never changes sign. Then
h(θ∗) = h′(θ∗) = 0. Choose a positive δ so small that the interval |θ− θ∗| ≤ δ lies in Ŝγ.
Because h is twice continuously differentiable, there is a constant c such that

|h(θ)| ≤ cδ2 for |θ − θ∗| ≤ δ.

If we require Q to satisfy

|Q(θ)| ≤ 1

2
Rp−1cδ2,

then d ln r/d|θ| ≤ `/|h−R1−pQ| ≤ −2γ/(cδ2) on a θ-interval of length 2δ. We conclude
that ln r is reduced by at least 4γ/(cδ) if θ traverses the component which contains θ∗.
By the same reasoning we see that ln r cannot increase by more than 2π`max/η when θ
increases by 2π. Thus if

δ <
2γη

πc`max

,

then if θ manages to increase by 2π by not getting stuck in a component of Ŝγ, ln r
is decreased by a fixed amount. Thus on any orbit whose θ does not get stuck in a
component of Ŝγ, r(t) is eventually reduced to the value R, after which r converges to
0.

We have shown in all sub-cases of Case 2 that if Q satisfies an inequality of the form
|Q(θ)| ≤ R1−pρ where ρ depends only on properties of ` and h, then the origin is a global
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attractor. Choose ρ as either η/2, or min{η/2, |h(θmin)|/2} or
min{η/2, c[γη/(πc`max)]

2/2}, depending on the situation. Choose R = [σ/(2`max)]
1/(p−1),

so that (5.4) is satisfied. In this way we find that the statement of the Theorem is satisfied
when ε = ρ/(2`max). The Theorem has been established in all cases.

6 Linear perturbation can produce blowup.

As we shall show, the following Theorem can be used to prove that a linear perturbation
can take a system all of whose solutions are bounded to one which has solutions which
blow up in a finite time.

Theorem 6.1 Assume that h(θ∗) = `(θ∗) = 0. Also suppose that either

a. there is a θ+ > θ∗ such that

i. `(θ) > 0 and h′(θ) 6= 0 for θ∗ < θ < θ+;

ii. the functions `/h′ and h/h′ are continuous on the closed interval [θ∗, θ+] and
right-differentiable at θ∗;

iii. if ν∗ := [`/h′](θ∗), then (p− 1)ν∗ + 1 > 0;

iv. [h/h′](θ∗) = 0 and [h/h′]′(θ∗) > 0; and

v. ν∗Q(θ∗) > 0

or

b. there is a θ− < θ∗ such that `(θ) > 0 and h′(θ) 6= 0 in the interval (θ−, θ∗), (ii) is
valid with [θ∗, θ+] replaced by [θ−, θ∗] and “right-differentiable” replaced by “left-
differentiable”, (iii) is valid, and the inequalities in (iv) and (v) are reversed.

Then the system (5.1) with α = −1 has at least one solution which blows up in a
finite time.

Proof. We first suppose that the assumptions of Part (a) are valid. In order to find an
orbit which corresponds to a solution which blows up, we introduce the new dependent
variable

µ := rp−1h(θ) in (θ∗, θ+),

and a new independent variable σ such that

dσ

dt
=
h′

h
.

The system (5.2) with α = −1 then becomes

µσ = µ

[
(p− 1)(µ`− Ph)

h′
+ µ−Q

]
,

θσ =
h

h′
(µ−Q).

(6.1)
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By our hypotheses, this system has the equilibrium (µ∗, θ∗), where

µ∗ :=
Q(θ∗)

(p− 1)ν∗ + 1
. (6.2)

An easy calculation shows that the Jacobian matrix of the right-hand sides at (µ∗, θ∗) is(
Q(θ∗) c

0 −(p−1)ν∗Q(θ∗)
(p−1)ν∗+1

[h/h′]′(θ∗)

)
with some constant c.

We see from the assumptions (iii), (iv), and (v) of Part (a) that the lower right entry
is negative, and that the upper left entry is not zero. Then the point (µ∗, θ∗) is either
a saddle point or an attractor. In either case, there is at least one trajectory which
converges to this equilibrium. Since µ∗ is finite and h(θ∗) = 0, r(t) must converge to
infinity on the corresponding solution of (5.2). We see from the θ-equation of (5.2) with
α = −1 that

dt

dθ
=

1

µ−Q(θ)
.

Since the right-hand side converges to a finite negative number as θ decreases to θ∗, we
conclude that θ becomes θ∗ in a finite time, so that the solution blows up in a finite
time. This proves the Theorem under the assumptions of Part (a). If the assumptions
of Part (b) are satisfied, we replace the variable θ by 2θ∗ − θ to obtain a new problem
which satisfies the assumptions of Part (a). Thus the Theorem is established.

The following application of this Theorem shows that an arbitrarily small linear
perturbation of a p-homogeneous system all of whose solutions are bounded can produce
solutions which blow up.

Example 6.1 Consider the system

du1

dt
= (u2 − u1)(u

2
1 + 2u1u2 − u2

2) + α(1− ε)u1

du2

dt
= (u2 − u1)(−u2

1 + 2u1u2 + u2
2) + α(1 + ε)u2,

(6.3)

which can be written in the polar form

d ln r

dt
= r2(sin θ − cos θ)(sin θ + cos θ) + α(1− ε[cos2 θ − sin2 θ])

dθ

dt
= (sin θ − cos θ)2 + 2αε sin θ cos θ.

When α = 0, one obtains the equation

d ln r

dθ
=

sin θ + cos θ

sin θ − cos θ
.
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Integration shows that if sin θ0 − cos θ0 6= 0, then

r =
r0

sin θ0 − cos θ0

(sin θ − cos θ).

Thus the orbit through (r0 cos θ0, r0 sin θ0) is a circle centered on the line u1 +u2 = 0 and
tangent to the line u1 = u2 = 0 at the origin. Since the points of the line u1−u2 = 0 are
all equilibria, we see that all solutions of the 3-homogeneous system which is obtained by
setting α = 0 in (6.3) are bounded.

On the other hand, we observe that h(π/4) = `(π/4) = 0, that h′ and ` are positive in
the interval (π/4, 3π/4), that Q(π/4) = −αε, and that h′ = 2`, so that ν∗ = 1/2. Thus
Part (a) of Theorem 6.1 shows that if αε < 0, the system (6.3) has solutions which blow
up in a finite time. In particular, we have shown that for any fixed ε > 0, all solutions
of the system (6.3) with α = 0 are bounded, while if α < 0, there are solutions which
blow up in a finite time. Thus in this case an arbitrarily small linear perturbation from
a p-homogeneous system produces solutions with finite-time blowup.

Mizoguchi, Ninomiya, and Yanagida [1] have shown that the Neumann problem

∂u1

∂t
= (1− ε)∆u1 + (u1 − u2)

3 − u1,

∂u2

∂t
= (1 + ε)∆u2 + (u1 − u2)

3 − u2,

∂u1

∂n
=
∂u2

∂n
= 0 on ∂Ω

(6.4)

on a bounded domain Ω has the property that all solutions converge to the origin when
ε = 0, but that there are solutions which blow up in a finite time when 0 < ε < 1.

If we think of u(t) as the value at x = 0 of a functions which is defined to be 0 at all
the other integer points x = k 6= 0, then the the second difference of this grid function
at x = 0 is δ2u(t, 0) = −2u(t, 0). Thus the system in the following example may be
thought of as a finite difference analog of the system (6.4) of Mizoguchi, Ninomiya, and
Yanagida, but with Dirichlet rather than Neumann boundary conditions.

Example 6.2 Consider the system

du1

dt
= (u1 − u2)

3 − (3− 2ε)u1

du2

dt
= (u1 − u2)

3 − (3 + 2ε)u2

(6.5)

with
0 ≤ ε < 1.
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When ε = 0, we can subtract the second equation of (6.5) from the first to see that
u1(t)− u2(t) = [u1(0)− u2(0)]e−3t. Hence the general solution of (6.5) with ε = 0 is

u1(t) = u1(0)e−3t +
1

6
[u1(0)− u2(0)]

3(e−3t − e−9t)

u2(t) = u2(0)e−3t +
1

6
[u1(0)− u2(0)]

3(e−3t − e−9t),

so that every solution converges to the origin.
The polar form of the system (6.5) is

d ln r

dt
= r2(cos θ − sin θ)3(cos θ + sin θ)− 3 + 2ε(cos2 θ − sin2 θ)

dθ

dt
= (cos θ − sin θ)4 − 4ε sin θ cos θ.

(6.6)

We note that h(π/4) = `(π/4) = 0, and that `(θ) > 0 and h′(θ) < 0 in the interval
(0, π/4). Moreover, h′ = −4` so that ν∗ = −1/4, and Q(π/4) = 2ε. Thus Part (b) of
Theorem 6.1 shows that if ε > 0, no matter how small it may be, there is a solution of
(6.5) which blows up in finite time.

The fact that the system (6.5) is a finite difference analog of the version of (6.4) with
Neumann conditions replaced by Dirichlet conditions hints, but does not prove, that
the result of [1] may be true for Dirichlet boundary conditions as well as for Neumann
conditions.
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