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Abstract

It is shown that the solutions of a single-locus diploid model with
population control for the spatial and temporal interaction of the three
genotypes approach a constant-density equilibrium in which only the
more fit allele is present, provided the density dependent birth rate
and fitnesses have certain properties. The speed at which this phe-
nomenon spreads is at least as great as that of the linearization of the
corresponding Fisher equation. A larger upper bound for this speed
is also obtained.
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1 Introduction.

This work is concerned with the interaction between genotypes of a diploid
species which only differ by the presence or absence of two possible alleles a
and A at a single genome site. We are interested in the long-time evolution of
the spatial densities of the three genotypes aa, aA, and AA. The populations
are distributed on the spatial habitat, which is the n-dimensional Euclidean
space. We shall use the notation

ρ1(x, t)=spatial density of the aa homozygotes at x at time t;

ρ2(x, t)=spatial density of the aA heterozygotes at x at time t;

ρ3(x, t)=spatial density of the AA homozygotes at x at time t.

A classical model for the evolution of a monoecious population under the
assumption of random gamete formation and pairing and random migration
is the system {

∂

∂t
−∇2

}
ρ1 =

B[ρ1 + 1
2
ρ2]2

ρ1 + ρ2 + ρ3

−D1ρ1{
∂

∂t
−∇2

}
ρ2 =

2B[ρ1 + 1
2
ρ2][1

2
ρ2 + ρ3]

ρ1 + ρ2 + ρ3

−D2ρ2{
∂

∂t
−∇2

}
ρ3 =

B[1
2
ρ2 + ρ3]2

ρ1 + ρ2 + ρ3

−D3ρ3.

(1.1)

For the sake of obtaining a simple model, we have assumed that the birth rate
B and the migration properties do not depend on the genotype, while the
death rates D1, D2, and D3 do. The unit of length has been chosen to make
the diffusivity due to random migration equal to 1. The nonlinear terms on
the right come from the fact that the rate at which a gametes are formed per
unit area is B[ρ1 + 1

2
ρ2] while A gametes are formed at the rate B[1

2
ρ2 + ρ3].

These rates imply that the fraction of all gametes being produced at (x, t)
which are of type a is [ρ1 + 1

2
ρ2]/[ρ1 + ρ2 + ρ3].

We shall be concerned with the so-called heterozygote intermediate
case, which is defined by the inequalities

D1 ≥ D2 ≥ D3 > 0 and D1 > D3. (1.2)

That is, the AA homozygote is fitter than the aa homozygote, and the fitness
of the aA heterozygote lies between those of the homozygotes.

The purpose of the present work is to investigate the long-time behavior of
a class of solutions of a system of the form (2.3) in which the total population
density ρ := ρ1 + ρ2 + ρ3 is kept under control by replacing the birth rate B
and the fitnesses B −Di by suitable functions of ρ. Theorem 2.1 will show
that if these functions satisfy certain inequalities, and if the initial values
of the densities represent the perturbation through invasion or mutation of
an equilibrium state in which the fitter allele A is absent, then the total
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population density lies between two positive constants, and the density vector
(ρ1(x, t), ρ2(x, t), ρ3(x, t)) converges to a constant equilibrium (0, 0, K3) in
which the allele a is absent, and K3 > 0. Moreover, there is an easily
computed positive number c− with the property that if c < c−, then the
convergence is uniform on the sets {(x, t) : |x| ≤ ct}. That is, the new final
state spreads at least as quickly as any speed below c−.

Theorem 4.1 gives an upper bound c+ for the speed of spreading of the
set where the solution is close to the equilibrium. However, c+ > c−, so that
our results do not prove the existence of an asymptotic spreading speed for
the problem (2.3).

When the densities are independent of the space variable x so that no
net migration occurs, our model is a special case of equation (4) of chapter
XV in the book of Kostitzin [6]. The convergence of (ρ1(t), ρ2(t), ρ3(t)) to
(0, 0, K3) for spatially independent solutions was stated in this book.

We note that our equations are for the spatial densities ρi of the genotypes
rather than gene fractions, which are ratios of these densities. The reason
is that we wish to model the random migration of individuals of the three
genotypes, which leads to diffusion equations for these densities, but not for
their ratios. The derivation of the equation of R. A. Fisher [3] for the case
D2 = [D1 +D3]/2 and its extension to other cases formally yields the Fisher
equation{

∂

∂t
−∇2

}
U = U(1− U)[(D1 −D2)(1− U) + (D2 −D3)U ]. (1.3)

The formal derivation depends on the assumption that the gene fraction

u :=
1
2
ρ2 + ρ3

ρ1 + ρ2 + ρ3

. (1.4)

satisfies a diffusion equation. This assumption is physically flawed, because
while population densities diffuse, ratios do not. Mathematically, this flaw is
reflected in the fact that when the diffusion operator, which is of second order
in x, is applied to a ratio, the chain rule yields not just a linear combination of
the results of applying the operator to the numerator and to the denominator,
but also a multiple of the scalar product of the gradients of the numerator
and denominator. This cross-differentiation term is missing from the Fisher
equation. While it is shown in the Appendix of [1] that if the differences
in the fitnesses are small, U is a good approximation to u for a sizable but
limited time, the relation of the long-time behaviors of U and u is unclear.
That is, the long-time behavior of the system (1.1) needs to be be studied
directly.

It was recently shown by P. Souplet and M. Winkler [8, 9] that if all the
parameters in (1.1) are constant and if the inequalities (1.2) are satisfied, then
any solution in which the allele A is initially present has the property that
the gene fraction u defined by (1.4) converges to one, uniformly on every
bounded x-set. That is, the fitter allele drives the less fit one out of the
population. In the ecologically interesting case in which the fitnesses B−Di

are all positive, the proof in [8, 9] consists of showing that all three population
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densities diverge exponentially to infinity, but that the rate of divergence of
ρ3 is greater than that of the other two densities. As was pointed out in [9],
the fact that the population densities approach infinity shows that the model
with constant parameters is unrealistic. More specifically, while such a model
might provide a good approximation when the time is not too large, it was
noted by T. R. Malthus [7] that faith in the accuracy of such a model for
extremely long times can result in unrealistic predictions.

In the case of population ecology it was shown independently by Lotka
and Volterra that the population can be kept under control by making the
fitness a decreasing linear function of the population density. We shall show
that in the population genetic problem the population can be kept under
control by making B and the three fitnesses B−Di be decreasing functions of
the total population density ρ, and we shall study the large-time asymptotics
of solutions of the resulting system (2.3).

Our main result, Theorem 2.1, and the lemmas which are used to establish
it are presented in Section 2. Section 3 examines the special case in which
the birth rates and the fitnesses are logistic functions. It is shown that the
conditions of Theorem 2.1 can be satisfied by choosing the coefficients in
the logistic functions in a proper order. Theorem 4.1, which gives an upper
bound for how quickly the convergence to (0, 0, K1) can spread in space,
is stated in Section 4. Section 5 discusses some possible extensions of our
results. All proofs are given in the Appendix, which is Section 6.

2 The takeover by the fitter allele of a system with population
control.

We begin by writing the system (1.1) in a simpler form. The algebraic
identities

[ρ1 + 1
2
ρ2]2 = [ρ1 + ρ2 + ρ3]ρ1 + 1

4
ρ2

2 − ρ1ρ3

2[ρ1 + 1
2
ρ2][1

2
ρ2 + ρ3] = [ρ1 + ρ2 + ρ3]ρ2 − 2[1

4
ρ2

2 − ρ1ρ3]

[1
2
ρ2 + ρ3]2 = [ρ1 + ρ2 + ρ3]ρ3 + 1

4
ρ2

2 − ρ1ρ3.

(2.1)

show that if one defines the function

h :=
1
4
ρ2

2 − ρ1ρ3

ρ1 + ρ1 + ρ3

, (2.2)

then the system can be written in the form{
∂

∂t
−∇2

}
ρ1 = [B −D1]ρ1 +Bh{

∂

∂t
−∇2

}
ρ2 = [B −D2]ρ2 − 2Bh{

∂

∂t
−∇2

}
ρ3 = [B −D3]ρ3 +Bh.

(2.3)
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Remarks. 1. Unlike the usual model for the population of three interacting
species, this system involves not only the three fitnesses B−Di, but also the
per capita birth rate B.

2. The definition (2.2) of h shows that h = 0 if and only if the Hardy-
Weinberg law is satisfied.

We shall study a system of the form (2.3) in which the birth rate B and
the death rates Di are functions of the total population density

ρ := ρ1 + ρ2 + ρ3 (2.4)

with certain properties. Because one can expect the per capita birth rate
B to decrease and the death rates Di to increase with increased crowding,
we shall always assume that the fitnesses B(ρ) − Di(ρ) are decreasing
functions of ρ.

We first observe that if the allele A is initially absent so that ρ2(x, 0) ≡
ρ3(x, 0) ≡ 0, then because the system (2.3) contains no mechanism for in-
migration or mutation, ρ2 ≡ ρ3 ≡ 0 for t > 0. In this case, the definition
(2.2) shows that h ≡ 0, so that the first equation of the system (2.3) becomes{

∂

∂t
−∇2

}
ρ1 = [B(ρ1)−D1(ρ1)]ρ1. (2.5)

This is a single equation of the type studied by Lotka, Volterra, and others
to model the growth and spread of a single species. (See, e.g., [1, 2, 10].) If
α > 0 and B(α)−D1(α) 6= 0, the solution of (2.5) with the constant initial
value α, is given implicitly by the equation∫ ρ1

α

dσ

[B(σ)−D1(σ)]σ
= t.

If B(ρ1) −D1(ρ1) > 0 for all positive ρ1, this shows that ρ1 must approach
infinity with t. Hence, as in Malthus [7], the equation (2.5) is an unrealistic
predictor for long-time behavior. If B(ρ1) − D1(ρ1) < 0 for all positive ρ1,
then ρ approaches zero as t→∞, and the same is true of all bounded solutions
of (2.5), which means that the aa monoculture is not viable. We conclude
that since B(ρ) − D1(ρ) is a decreasing function of ρ, the only interesting
model of this kind is one in which B(ρ)−D1(ρ) changes sign at some value
K1 > 0. In this case, any solution of (2.5) with ρ1(x, 0) bounded, non-
negative, and not identically zero converges to the constant K1, uniformly
on every bounded set, as t→∞. The constant K1 is called the carrying
capacity of the habitat for the aa monoculture.

In a similar vein, we consider the special case in which ρ1(x, 0) ≡ ρ2(x, 0)
≡ 0, to find a solution (0, 0, ρ3(x, t)), where ρ3 satisfies the scalar equation{

∂

∂t
−∇2

}
ρ3 = [B(ρ3)−D3(ρ3)]ρ3. (2.6)

As in the case of the above equation (2.5), we find the this model is of interest
only under the assumption that there is a K3 > 0 such that the decreasing
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function B(ρ)−D3(ρ) is zero at K3. Then K3 is the carrying capacity of the
habitat for the AA monoculture.

If D1(K1) > D3(K1), then B(K1) − D3(K1) = D1(K1) − D3(K1) > 0.
Since B −D3 is decreasing,

K3 > K1.

The same argument also shows that if the heterozygote intermediate condi-
tion (1.2) is valid at ρ = K1 and ρ = K3, then there is a K2 with

K1 ≤ K2 ≤ K3 and B(K2)−D2(K2) = 0,

Since the system (2.3) has no solution of the form (0, ρ2(x, t), 0) with ρ2 6≡ 0,
it is difficult to assign a biological meaning to K2.

Finally, we observe that the constant vectors (K1, 0, 0) and (0, 0, K3) are
equilibria of the system (2.3).

We are primarily interested in the situation in which, until shortly before
t = 0, the population consisted entirely of aa homozygotes, with its density
ρ1 everywhere equal to the carrying capacity K1. Then A alleles appeared,
either through mutation or through invasion. In both of these processes, ρ1 is
not increased, while ρ2 and ρ3 are not decreased. If the mutation or invasion
is not too large, we can expect that

K1 ≤ ρ1(x, 0) + ρ2(x, 0) + ρ3(x, 0) ≤ K3,
1
2
ρ2(x, 0) + ρ3(x, 0) 6≡ 0, and

ρ1(x, 0)− ρ3(x, 0) ≤ K1.

(2.7)

We shall establish the convergence of a large class of solutions of (2.3)
with such initial conditions to the equilibrium (0, 0, K3) under some simple
conditions on the birth and death rate functions. We begin with a known
proposition, which gives elementary assumptions about the functions B(ρ)
and Di under which the inequality K1 ≤ ρ ≤ K3 for the initial conditions
implies the same inequality for all t > 0.

Proposition 2.1. Suppose that for some constants K1 > 0 and K3 > K1

the functions B(ρ), D1(ρ), D2(ρ), and D3(ρ) are continuously differentiable
and non-negative on the interval K1 ≤ ρ ≤ K3, and that

B(K1)−Di(K1) ≥ 0 and B(K3)−Di(K3) ≤ 0 for i = 1, 2, 3. (2.8)

Then the inequalities

K1 ≤ ρ1(x, 0) + ρ2(x, 0) + ρ3(x, 0) ≤ K3,

for the initial values of a solution of the system (2.3) imply that

K1 ≤ ρ1(x, t) + ρ2(x, t) + ρ1(x, t) ≤ K3 for all x and all t ≥ 0. (2.9)

The proof of this Proposition and all other proofs will be presented in the
Appendix, which is Section 6.
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Remark. Proposition 2.1 shows that as long as the initial values of
the total population density ρ lie between K1 and K3, this density remains
bounded below by K1 and above by K3, so that the population is controlled
and kept from extinction. It also implies that the corresponding solution of
the system depends only on the properties of the restriction of the functions
B(ρ) and Di(ρ) to the interval [K1, K3].

We shall show below that the following hypotheses permit one to show
that a solution whose initial values satisfy the conditions (2.7) converge to
the equilibrium (0, 0, K3) and to find a lower bound for the speed at which
this convergence spreads in space.

Hypotheses 2.1. i. The constants K1, K2, and K3 satisfy the inequalities

0 < 3K1 < K2 < K3. (2.10)

ii. The birth rate B(ρ) and the death rates D1(ρ), D2(ρ), and D3(ρ) are con-
tinuously differentiable on the interval [K1, K3], and have the following
properties.

B(Ki)−Di(Ki) = 0 and B′(ρ)−D′i(ρ) < 0

for i = 1, 2, 3 and K1 ≤ ρ ≤ K3.
(2.11)

iii.
D1(ρ) ≥ D2(ρ) ≥ 1

2
[D1(ρ) +D3(ρ)] for K1 ≤ ρ ≤ K3, (2.12)

iv.
D3(ρ) > 0 for K1 ≤ ρ ≤ K3. (2.13)

Remark. The inequalities (2.12) imply that D1 ≥ D2 ≥ D3, and the
inequalities (2.11) imply that D1(ρ) > D3(ρ), so that the heterozygote inter-
mediate conditions (1.2) are satisfied for K1 ≤ ρ ≤ K3.

Our main result is the the following theorem.

Theorem 2.1. Let the Hypotheses 2.1 be satisfied. Let
(ρ1(x, t), ρ2(x, t), ρ3(x, t)) be any non-negative solution of the system (2.3)
whose initial values are continuous and satisfy the inequalities (2.7).

Then for any c with

c < c− := 2
√
D1(K1)−D2(K1) (2.14)

the solution has the properties

lim
t→∞

[
max
|x|≤ct

ρ1(x, t)

]
= 0,

lim
t→∞

[
max
|x|≤ct

ρ2(x, t)

]
= 0, and

lim
t→∞

[
max
|x|≤ct

|K3 − ρ3(x, t)|
]

= 0.

(2.15)
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We shall prove Theorem 2.1 by using Proposition 2.1 and a sequence of
lemmas. All proofs will be presented in the Appendix (Section 6). The proofs
will be based on a form of the maximum principle often called a Phragmén-
Lindelöf principle, which works, as here, when the habitat is unbounded. A
simple version of this principle will be stated and proved as Proposition 6.1
at the beginning of the Appendix.

We begin with a bound for the difference ρ1 − ρ3.

Lemma 2.1. Assume that the conditions of Theorem 2.1 are satisfied. Then

ρ1(x, t)− ρ3(x, t) ≤ K1 for all t ≥ 0. (2.16)

Because (2.13) says that the continuous function D3(ρ) is strictly positive
on the closed interval [K1, K3], we see that

δ := min
K1≤ρ≤K3

D3(ρ) > 0. (2.17)

The next lemma gives a decaying uniform upper bound for the nonlinear
function h defined in equation (2.2). We note that it does not give a lower
bound for h.

Lemma 2.2. Let the conditions of Theorem 2.1 be satisfied, and let h be
defined by (2.2). Then

h(x, t) ≤ max{sup
x
h(x, 0), 0}e−δt, (2.18)

where δ is defined by (2.17).

We now obtain a spreading result for the density

q := 2ρ3 + ρ2 (2.19)

of the allele A.

Lemma 2.3. Assume that the conditions of Theorem 2.1 are satisfied. Then
for any number

c < c− := 2
√
D1(K1)−D2(K1) (2.20)

the inequality

lim inf
t→∞

[
min
|x|≤ct

q(x, t)

]
≥ K2 −K1 (2.21)

is valid.

We are now ready to prove the first statement of Theorem 2.1.

Lemma 2.4. Let the conditions of Theorem 2.1 be satisfied. Then there are
positive constants M1 and α̂ such that

max
|x|≤ct

ρ1(x, t) ≤M1e
−α̂t. (2.22)
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Lemmas 2.2 and 2.4 also yield the second statement of Theorem 2.1.

Lemma 2.5. Assume that the conditions of Theorem 2.1 are satisfied. For
any c < c− there is an M2 > 0 such that

max
|x|≤ct

ρ1(x, t)] ≤M2e
−1

2
α̂t,

where α̂ is the constant in Lemma 2.4.

The last lemma gives the last statement of Theorem 2.1.

Lemma 2.6. Let the conditions of Theorem 2.1 be satisfied. Then for any

c < c−

there are an M3 and an ᾱ with

0 < ᾱ ≤ 1
2
α̂ (2.23)

such that
max
|x|≤ct

|K3 − ρ3(x, t)| ≤M3e
−ᾱt. (2.24)

We observe that Lemmas 2.4, 2.5, and 2.6 immediately imply the state-
ments (2.15) of Theorem 2.1.

Since the asymptotic spreading speed of the Fisher equation (1.3) is
bounded below by the spreading speed 2

√
D1 −D2 of its linearization about

U = 0, we see that these lower bounds coincide if we take D1 and D2 in the
latter formula to be the values D1(K1) and D2(K1) of the death rates of (2.3)
at the unstable equilibrium (K1, 0, 0).

3 An example with logistic functions.

In order to find an explicit system for which the Hypotheses 2.1 are satisfied,
we first choose constants

0 < 3K1 < K2 < K3,

so that Hypothesis 2.1.i is satisfied. We choose the restrictions of the birth
rate and death rates to the interval [K1, K3] in the form

B(ρ) = β[1− (ρ/J)]

Di(ρ) = β[1− (ρ/J)]− γi[1− (ρ/Ki)] for i = 1, 2, 3.
(3.1)

so that the birth rate and the fitnesses are Verhulst logistic functions. All
parameters are positive. These functions clearly satisfy Hypothesis 2.1.ii.
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The definitions of the Di in (3.1) show that (2.12) can be written in the
form

γ1[1−(ρ/K1)] ≤ γ2[1− (ρ/K2)]

≤ 1
2
{γ1[1− (ρ/K1)] + γ3[1− (ρ/K3)]} for K1 ≤ ρ ≤ K3.

(3.2)

Because all the functions are linear, these inequalities are true on the interval
[K1.K3] if and only if they are true at the end points. By setting ρ = K1, we
obtain the inequalities

0 ≤ γ2[1− (K1/K2)] ≤ 1
2
γ3[1− (K1/K3)].

We can satisfy this by choosing any positive γ2, and choosing any γ3 such
that

γ3 ≥ 2γ2[1− (K1/K2)]/[1− (K1/K3)]. (3.3)

By setting ρ = K3 in (3.2) and dividing by the negative number 1
2
[1 −

(K3/K1)], we find the inequalities

γ2[(K3/K2)−1]/[(K3/K1)−1] ≤ γ1 ≤ 2γ2[(K3/K2)−1]/[(K3/K1)−1]. (3.4)

Thus Hypothesis 2.1.iii is satisfied whenever γ2 is any positive number, γ1

satisfies (3.4), and γ3 satisfies (3.3).

The remaining Hypothesis 2.1.iv takes the form

β[1− (ρ/J)]− γ3[1− (ρ/K3)] > 0 for K1 ≤ ρ ≤ K3.

As above, the function is linear, so that we only have to satisfy the inequality
at the end points. This leads to the inequalities

β[1− (K1/J)] > γ3[1− (K1/K3)] and β[1− (K3/J ] > 0.

The second of these is satisfied if and only if

J > K3. (3.5)

The first only requires that

β > γ3[1− (K1/K3)]/[1− (K1/J)]. (3.6)

Thus we have shown how to choose the parameters in the functions (3.1) so
that the Hypotheses 2.1 are satisfied.

In order to have a biologically realistic model, we should require the death
rates to be increasing functions of ρ. This is equivalent to the requirement
that

β/J < min{γ1/K1, γ2/K2, γ3/K3}.
This inequality is compatible with (3.6) if and only if

J > K1 + γ3[1− (K1/K3)]/[min{γ1/K1, γ2/K2, γ3/K3}],

which is at least as strict as (3.5).

It is usually observed in nature that the dimensionless advantage [D1 −
D3]/[D1 +D3] of the fitter allele A is very small. The logistic model has this
property when the parameters J and β are large.
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4 A speed limit.

Let (ρ1(x, t), ρ2(x, t), ρ3(x, t)) be any solution of (2.3) whose initial values
satisfy the inequalities (2.7). Theorem 2.1 implies that for any ε > 0 and any
c < c− there is a Tε such that the set

Nε(t) := {x : ρ1(x, t) ≤ ε, ρ2(x, t) ≤ ε,K3 − ρ3(x, t) ≤ ε}

contains the ball {|x| ≤ ct} when t ≥ Tε. That is, the set Nε spreads in all
directions at a speed which is greater than any number below c−. In this
section we present an upper bound c+ on the speed with which the set Nε(t)
can spread.

Theorem 4.1. Assume that the conditions of Theorem 2.1 are satisfied.
Suppose that the initial values of the density q = 2ρ3 +ρ2 of the A allele have
the additional property that they are zero outside a bounded set.

Define the number

c+ := 2
√
D1(K1)−D3(K1), (4.1)

Then for any c > c+

lim inf
t→∞

[ inf
|x|≥ct

ρ1(x, t)] ≥ K1 and lim
t→∞

[ sup
|x|≥ct

ρ3(x, t)] = 0. (4.2)

It follows that the first and third equation in (2.15), which, according to
Theorem 2.1, are satisfied when c < c−, are violated when c > c+.

The proof of this theorem is at the end of the Appendix.

Remark. Hypothesis (2.12) shows that D1(ρ) − D2(ρ) ≤ 1
2
[D1(ρ) −

D3(ρ)]. Setting ρ = K1 then shows that c− ≤ c+/
√

2, so that Theorems 2.1
and 4.1 do not imply that the system (2.3) has an asymptotic spreading
speed, or even that one component of one particular solution has an asymp-
totic spreading speed.

5 Discussion.

The conclusions of Theorem 2.1 do not require knowledge about the behavior
of B(ρ) and the Di(ρ) outside the set K1 ≤ ρ ≤ K3. For example, the
fitnesses B −Di need not be decreasing outside this interval. In particular,
the fitnesses may all be negative for sufficiently small ρ. In such a case, the
extinction state (0,0,0) is a local attractor, so that the model (2.3) has a
strong Allee effect.

As we pointed out at the end of Section 2, the lower bound c− in Theo-
rem 2.1 coincides with the speed of the linearization of the Fisher equation
(1.3) with the death rates Di = Di(K1). Hence, c− is also a lower bound
for the spreading speed c∗ of the equation (1.3) when the death rates are
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those of (2.3) at the unstable equilibrium (K1, 0, 0). An upper bound for
c∗ is obtained by observing that the heterozygote intermediate inequalities
imply that D1−D2 ≤ D1−D3 and D2−D3 ≤ D1−D3. It then follows that
c∗ ≤ 2

√
D1 −D3. This shows that for the equation (1.3) with Di = Di(K1)

we have the bounds
c− ≤ c∗ ≤ c+.

Thus, Theorems 2.1 and 4.1 are consistent with the conjecture that c∗ is also
the asymptotic spreading speed of the system (2.3). However, to prove this
conjecture, one would have to show the very strong statement that for every
suitable solution the three functions ρ1, ρ2, and K3−ρ3 approach their limits
0 with the asymptotic speed c∗.

The strengthened form (2.12) of the heterozygote intermediate condition
D1(ρ) ≥ D2(ρ) ≥ D3(ρ) was only used in the proof of Lemma 2.2, and the
strengthened form (2.10) of the natural condition K1 < K2 < K3 was only
used in the proof of Lemma 2.4. Neither of these conditions seems to be
biologically significant. It is quite possible that these extra conditions can
be eliminated by using a different proof. It was, in fact, shown in [12] that
one can prove the uniform convergence to (0, 0, K3) of a solution of (2.3) in a
bounded domain with impenetrable boundaries without them. On the other
hand, the assumption that the three genotypes have the same diffusivity is
vital to our proofs.

The present paper is only a first look at the long-time behavior of solutions
of the non-cooperative system (2.3). Much further work needs to be done on
this problem.

6 Appendix: Proofs

Many of the proofs of the lemmas of Section 2 and the proof of Theorem 4.1
will be based upon a form of the maximum principle for parabolic operators
discovered by A. Friedman in Part II of [4] and known as the Phragmén-
Lindelöf principle. It has the advantage that it can be applied when, as here,
the habitat is unbounded. The following proposition states and proves a
result which is weaker than that of Friedman, but is more easily proved.

Proposition 6.1. Let D be a domain in the half-space {(x, t) : t > 0}.
Let v(x, t) be a continuous function on the closure of D with the following

properties.

1. v(x, t) is smooth in D, and{
∂

∂t
−∇2

}
v ≤ 0 at all (x, t) in D at which v > 0.

2. v(x, t) ≤ 0 at the boundary points of D.

3. For every T > 0, the function v(x, t) is uniformly bounded above for all
(x, t) in D with 0 ≤ t ≤ T .
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Then v(x, t) ≤ 0 for all (x, t) in D.

Proof. Define the function

w(x, t) := v(x, t)/[3nt+ 1 + |x|2],

where n is the dimension of the x-space. By replacing v by [3nt+ 1 + |x|2]w
in the above Assumption 1, we find that

[3nt+1+|x|2]
∂w

∂t
−[3nt+1+|x|2]∇2w−4x·∇w+nw ≤ 0 when w > 0. (6.1)

Suppose for the sake of contradiction that v(x̄, t̄) > 0 for some (x̄, t̄) in
D. Then also w(x̄, t̄) > 0. Define the set

S := {(x, t) in D : 0 ≤ t ≤ t̄ and w(x, t) ≥ w(x̄, t̄)}.

By Assumption 3, there is a constant L ≤ 0 such that v(x, t) ≤ L for (x, t)
in D and 0 ≤ t ≤ t̄. Therefore, w(x̄, t̄) ≤ w(x, t) ≤ L/[1 + |x|2] on S, so that
|x|2 ≤ L/w(x̄, t̄). That is, S is a nonempty closed bounded set. Because
w(x, t) ≤ 0 at boundary points of D, S is disjoint from the boundary. Thus,
t attains its minimum value t̂ > 0 on S at a point (x̂, t̂) of D. This point has
the properties

w(x, t) ≤ w(x̄, t̄) = w(x̂, t̂) for (x, t) in D and 0 ≤ t ≤ t̂.

Elementary calculus then shows that

∂w(x̂, t̂)

∂t
≥ 0, ∇w(x̂, t̂) = 0, and ∇2w(x̂, t̂) ≤ 0.

Because w(x̂, t̂) = w(x̄, t̄) > 0, these inequalities show that the left-hand side
of (6.1) at the point (x̂, t̂) is strictly positive, which contradicts (6.1). Thus
the assumption that v(x̄, t̄) > 0 for some point of D leads to a contradiction.
We conclude that v(x, t) ≤ 0 for all (x, t) in D, which is the statement of
Proposition 6.1.

Proof of Proposition 2.1. We define the new functions B̃(ρ) and D̃i(ρ)
by

B̃(ρ) :=


B(ρ) for K1 ≤ ρ ≤ K3

B(K1) for 0 ≤ ρ ≤ K1

B(K3) for ρ ≥ K3

and

D̃i(ρ) :=


Di(ρ) for K1 ≤ ρ ≤ K3

Di(K1) for 0 ≤ ρ ≤ K1

Di(K3) for ρ ≥ K3

for i = 1, 2, 3.

13



These functions are continuous and piecewise continuously differentiable, and
their one-sided derivatives are uniformly bounded. Therefore, we can find the
solution (ρ̃1(x, t), ρ̃1(x, t), ρ̃1(x, t)) of the system which is obtained from (2.3)
by replacing B and the Di by B̃ and the D̃i and ρ by ρ̃, where ρ̃ satisfies the
initial conditions

ρ̃i(x, t) = ρi(x, t).

By adding the three equations of (2.3) with B, Di, and ρi replaced by the
tilde functions and using the inequalities (2.8), we obtain the inequality{

∂

∂t
−∇2

}
ρ̃ = [B̃(ρ̃)− D̃1(ρ̃)]ρ̃1 + [B̃(̃ρ)− D̃2(ρ̃)]ρ̃2 + [B̃(ρ̃)− D̃3(ρ̃)]ρ̃3]

≤ 0 when ρ̃ ≥ K3.
(6.2)

The conditions B(K3)−Di(K3) ≤ 0 show that{
∂

∂t
−∇2

}
[ρ̃−K3] ≤ 0 when ρ̃(x, t)−K3 ≥ 0.

This is Assumption 1 of Proposition 6.1 with v := ρ − K3. Assumption
2 follows from the fact that ρ̃(x, 0) = ρ(x, 0) ≤ K3, and Assumption 3 is
valid because the usual construction of the solution of (2.3) by iterating the
corresponding system of integral equations shows that supx ρ̃(x, t) grows at
most exponentially in t. Proposition 6.1 now shows that ρ̃(x, t)−K3 ≤ 0 for
t ≥ 0. That is, ρ̃(x, t) ≤ K3 for t ≥ 0.

The analogous argument shows that the right-hand side of the first line of
(6.2) is non-negative for ρ̃ ≤ K1. Then Proposition 6.1 applied to v := K1− ρ̃
shows that ρ̃ ≥ K1 for t ≥ 0. That is, K1 ≤ ρ̃ ≤ K3.

Since B̃ and the D̃i agree with B and the Di on the interval [K1, K3], the
function ρ̃ satisfies the original equation (2.3) and has the same initial values
as ρ. Therefore, ρ(x, t) = ρ̃(x, t). We have thus shown that K1 ≤ ρ(x, t) ≤
K3 for t ≥ 0, which is the statement of Proposition 2.1.

Remarks. 1. It is easily verified that the Hypotheses 2.1 imply the condi-
tions of Proposition 2.1. Since Theorem 2.1 concerns solutions of (2.3) whose
initial conditions satisfy the inequalities (2.7), we shall use the inequalities
K1 ≤ ρ(x, t) ≤ K3 in all the proofs which follow.

2. Proposition 2.1 shows that as long as K1 ≤ ρ(x, 0) ≤ K3, the solution
of (2.3) is independent of the values of B and the Di outside the interval
[K1, K3].

3. Because the set {(ρ1, ρ2, ρ3) : ρ1 ≥ 0, ρ2 ≥ 0, ρ3 ≥ 0, K1 ≤ ρ1+ρ2+ρ3 ≤
K3} is convex, Proposition 2.1 also follows from Theorem 1 of [11].

Proof of Lemma 2.1. By subtracting the third equation of (2.3) from
the first, we find that{

∂

∂t
−∇2

}
[ρ1 − ρ3] = [B(ρ)−D1(ρ)]ρ1 − [B(ρ)−D3(ρ)]ρ3.
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Since B(ρ)−D1(ρ) is non-increasing and vanishes at K1, we see that [B(ρ)−
D1(ρ)] ≤ 0 on the interval [K1, K3]. Similarly, we see that B(ρ)−D3(ρ) ≥ 0
on this interval. Therefore{

∂

∂t
−∇2

}
[ρ1 − ρ3 −K1] ≤ 0.

Since ρ1(x, 0)− ρ3(x, 0) ≤ K1 by (2.7), the application of Proposition 6.1 to
the function v := ρ1 − ρ3 −K1 in the half-space t > 0 shows that ρ1(x, t)−
ρ3(x, t) ≤ K1 for all t ≥ 0. This is the statement (2.16) of Lemma 2.1.

Proof of Lemma 2.2. An exercise in using the chain rule together with
patient manipulation shows that if (ρ1(x, t), ρ2(x, t), ρ3(x, t)) is a solution of
(2.3) and h is defined by (2.2), then{

∂

∂t
−∇2

}
h = −(2/ρ3)

∣∣[1
2
ρ2 + ρ3]∇[ρ1 + 1

2
ρ2]− [ρ1 + 1

2
ρ2]∇[ρ1 + 1

2
ρ2]
∣∣2

− 1
4
[2D2(ρ)−D1(ρ)−D3(ρ)]ρ2

2ρ
−1

− {D1(ρ) +D3(ρ)− ρ−1[D1(ρ)ρ1 +D2(ρ)ρ2 +D3(ρ)ρ3]}h.
(6.3)

The first term on the right is the cross-differentiation term. The ad-
vantage of the function h is that this term is non-positive. The inequality
(2.12) shows that the second term is also non-positive. Thus we obtain the
differential inequality{
∂

∂t
−∇2

}
h ≤ −{D1(ρ) +D3(ρ)− ρ−1[D1(ρ)ρ1 +D2(ρ)ρ2 +D3(ρ)ρ3]}h.

(6.4)
Because the inequalities (2.12) imply the heterozygote intermediate inequal-
ities D1(ρ) ≥ D2(ρ) ≥ D3(ρ), we see that D1ρ1 + D2ρ2 + D3ρ3 ≤ D1ρ.
Therefore, the coefficient of h on the right of (6.4) has the property

−{D1(ρ) +D3(ρ)− ρ−1[D1(ρ)ρ1 +D2(ρ)ρ2 +D3(ρ)ρ3]} ≤ −D3(ρ) ≤ −δ,

where δ := minK1≤ρ≤K3 D3(ρ) > 0. Thus we see that{
∂

∂t
−∇2

}
h ≤ −δh when h ≥ 0.

It follows that{
∂

∂t
−∇2

}
[h−max{suph(x, 0), 0}e−δt] ≤ −δ[h−max{suph(x, 0), 0}e−δt]

≤ 0 when h(x, t)−max{suph(x, 0), 0}e−δt ≥ 0.

This shows that the function

v(x, t) := h(x, t)−max{suph(x, 0), 0}e−δt
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satisfies Assumption 1 of Proposition 6.1. Since v(x, 0) ≤ 0 and v(x, t) ≤
K3e

δt/4, Proposition 6.1 implies that v(x, t) ≤ 0 for t ≥ 0, which is the
statement of Lemme 2.2.

Proof of Lemma 2.3. Adding the second equation of (2.3) to twice the
third equation shows that{

∂

∂t
−∇2

}
q = [B(ρ)−D2(ρ)]ρ2 + 2[B(ρ)−D3(ρ)]ρ3.

Because D3 ≤ D2, the right-hand side is bounded below by [B(ρ)−D2(ρ)]q.

It is easily verified that ρ = ρ1− ρ3 + q. Therefore Lemma 2.1 shows that

ρ ≤ K1 + q.

Because (2.11) with i = 2 states that B −D2 is positive and decreasing for
K1 ≤ ρ < K2, we conclude that{

∂

∂t
−∇2

}
q ≥ [B(K1 + q)−D2(K1 + q)]q for 0 ≤ q ≤ K2 −K1. (6.5)

We now define q̂ to be the solution of the initial value problem{
∂

∂t
−∇2

}
q̂ = [B(K1 + q̂)−D2(K1 + q̂)]q̂

q̂(x, 0) = min{q(x, 0), 1
2
[K2 −K1]}.

(6.6)

Because of of (2.11) with i = 2, this equation is of Fisher-KPP type. In
particular, the function B(K1 + q̂) − D2(K1 + q̂)] decreases from B(K1) −
D2(K1) to 0 as ρ2 increases from 0 to K2−K1. It follows (see, e.g. [5, 1, 2, 10])

that (6.6) has the asymptotic spreading speed 2
√
B(K1)−D2(K2). Because

(2.11) with i = 1 shows that B(K1) = D1(K1), we can write this speed as

2
√
D1(K1)−D2(K2). In particular,

lim
t→∞

[
min
|x|≤ct

q̂(x, t)

]
= K2 −K1 when c < c− := 2

√
D1(K1)−D2(K1)]. (6.7)

By subtracting the two sides of the inequality (6.5) from those of the equation
(6.6), we obtain the inequality{
∂

∂t
−∇2

}
[q̂− q] ≤ [B(K1 + q̂)−D2(K1 + q̂)]q̂− [B(K1 + q)−D2(K1 + q)]q

(6.8)
Since B′ − D′2 < 0 by (2.11), the derivative of the function [B(K1 + q) −
D2(K1+q)]q is bounded above byB(ρ)−D(ρ) ≤ B(K1)−D2(K1) = D1(K1)−
D2(K1) when 0 ≤ q ≤ K2 −K1. The mean value theorem then shows that
the right-hand side of (6.8) is bounded by [D1(K1)−D2(K1)][q̂−q] ≤ 0 when
q̂ − q ≥ 0. Thus,{

∂

∂t
−∇2

}
[(q̂ − q)e−[D1(K1)−D2(K1)]t] ≤ 0 when q̂ − q ≥ 0.
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Since the initial condition in (6.6) shows that q̂(x, 0)− q(x, 0) ≤ 0, Proposi-
tion 6.1 with v := [q̂ − q]e−[D1(K1)−D2(K1)]t shows that

q(x, t) ≥ q̂(x, t) for t ≥ 0.

This and the above equation (6.7) immediately yield the statement (2.21) of
Lemma 2.3.

Proof of Lemma 2.4. The proof will use upper bounds for the two
terms on the right of the first equation of (2.3). Lemma 2.2 immediately
shows that there is a positive constant m such that

B(ρ)h ≤ me−δt. (6.9)

In order to bound the coefficient B − D1 of ρ1 in the first term of the
right-hand side of the first equation of (2.3), we first choose any number c̃
with

0 < c < c̃ < c−.

Lemma 2.3 with c replaced by c̃ shows that for any η with 0 < η < K2−K1,
there is a t(η) such that

q ≥ K2 −K1 − η when |x| ≤ c̃t and t ≥ t(η).

Because ρ ≥ 1
2
q and B −D1 is decreasing, we see that

B(ρ)−D1(ρ) ≤B
(

1
2
q
)
−D1

(
1
2
q
)
≤ B

(
1
2
[K2 −K1 − η]

)
−D1

(
1
2
[K2 −K1 − η]

)
for |x| ≤ c̃t and t > t(η).

(6.10)

The hypothesis (2.10) shows that 3K1 > K2 so that 1
2
[K2 −K1] > K1. We

choose η so small that 1
2
[K2 −K1 − η] > K1. Because B −D1 is decreasing

and B(K1)−D1(K1) = 0, this shows that

ν := −{B(1
2
[K2 −K1 − η])−D1(1

2
[K2 −K1 − η])} > 0. (6.11)

This and the inequality (6.10) show that

B(ρ)−D1(ρ) ≤ −ν.

We substitute this and the inequality (6.9) into the first equation of (2.3) to
see that {

∂

∂t
−∇2

}
ρ1 ≤ −νρ1 +me−δt for |x| ≤ c̃t, t ≥ t(η). (6.12)

We note that c̃ > c, and that the function [ν − µ2]/µ decreases from +∞
to −∞ as µ goes from 0 to ∞. We choose a number µ > 0 such that

c < [ν − µ2]/µ < c̃. (6.13)
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It is easily verified that if x1 is one of the Euclidean coordinates of the
x-space, then for any positive γ the function

ρ̂1(x1, t) := γe[−ν+µ2]t cosh(µx1) +m[e−δt − e−νt]/[ν − δ] (6.14)

satisfies the equation{
∂

∂t
−∇2

}
ρ̂1 = −ν{ρ̂1 −m[e−δt − e−νt]/[ν − δ]}+me−δt.

The second term in (6.14), interpreted as the limiting value mte−δt when
ν = δ, is non-negative for t ≥ 0. Thus,{

∂

∂t
−∇2

}
ρ̂1 ≥ −νρ̂1 +me−δt (6.15)

and
ρ̂1(x1, t) ≥ γe[−ν+µ2]t cosh(µx1). (6.16)

We observe that when |x1| = c̃t, the coefficient of γ on the right-hand side
has the lower bound

e[−ν+µ2]t cosh(µc̃t) ≥ 1
2
e{−([ν−µ2]/µ)+c̃}µt

Because of the right inequality in (6.13), the coefficient of t in the exponential
is positive, so that the right-hand side approaches infinity with t. It follows
that e[−ν+µ2]t cosh(µx1) is uniformly positive on the set {(x1, t) : |x1| = c̃t, t ≥
0. The same is true on the set

{(x1, t) : |x1| ≤ c̃t, 0 ≤ t ≤ t(η)}}, (6.17)

which is bounded in the x1-t space.

We now choose the parameter γ in (6.14) so large that the right-hand
side of (6.16) is bounded below by K3 on these sets. Then

ρ̂1(x1, t) ≥ K3 ≥ ρ1(x, t)

on the boundary of the domain

D := {(x, t) : |x1| < c̃t, t > t(η)},

as well as on the set (6.17).

By subtracting the equation (6.15) from (6.12), we see that{
∂

∂t
−∇2

}
[ρ1 − ρ̂1] ≤ −ν[ρ1 − ρ̂1].

Proposition 6.1 applied to the function v := ρ1 − ρ̂1 in the domain D shows
that the inequality

ρ1(x, t) ≤ ρ̂1(x1, t) = γe[−ν+Dµ2]t cosh(µx1) +m[e−δt − e−νt]
for |x1| ≤ c̃t

18



is valid for t ≥ t(η) as well as on the set (6.17). That is, it is true for all t ≥ 0.

Because cosh(µx1) is increasing in |x1| and is bounded above by eµ|x1|,
and because |x1| ≤ |x|, this gives the bound

max
|x|≤ct

ρ1(x, t) ≤ γe−{([ν−Dµ
2]/µ)−c}µt+m[e−δt−e−νt]/[ν−δ] for |x1| ≤ ct, t ≥ 0.

The left inequality of (6.13) shows that the first term is a multiple of a
negative exponential. We conclude that if we define

α̂ := min{ν −Dµ2 − cµ, δ} > 0,

then there is an M1 > 0 such that

max
|x|≤ct

ρ1(|x|, t)] ≤M1e
−α̂t for t ≥ 0.

This is the statement of Lemma 2.4.

Proof of Lemma 2.5. The definition (2.2) of h shows that

ρ2
2 = 4[ρh+ ρ3ρ1].

Because 0 ≤ ρ3 ≤ ρ ≤ K3 and α̂ ≤ δ, Lemmas 2.2 and 2.4 immediately imply
the statement of Lemma 2.5.

Proof of Lemma 2.6. Write the last equation of (2.3) in the form{
∂

∂t
−∇2

}
[K3 − ρ3] = −[B(ρ)−D3(ρ)]ρ3 −B(ρ)h. (6.18)

Because [B(ρ)−D3(ρ)]′ < 0 on the closed interval [K1, K3], there is a number

ν̃ := max{−[B(ρ)−D3(ρ)]′} > 0. (6.19)

Because B(K3) − D3(K3) = 0 and ρ ≤ K3, the mean value theorem shows
that

−[B(ρ)−D3(ρ)] ≤ −ν̃[K3 − ρ] = −ν̃[K3 − ρ3 − ρ1 − ρ2].

On the other hand, we see from the definition (2.2) of h that

−h ≤ ρ1ρ3/ρ ≤ ρ1.

Since B(ρ) ≥ 0, we can put the two preceding inequalities into the equation
(6.18) to see that{

∂

∂t
−∇2

}
[K3 − ρ3] ≤ −ν̃[K3 − ρ3] + ν̃[ρ1 + ρ2] +B(ρ)ρ1. (6.20)

B(ρ) is, of course, uniformly bounded on [K1, K3]. We now choose a c̃ with
c < c̃ < c− and apply Lemmas 2.4 and 2.5 with c replaced by c̃ and Lemma 2.2
to find that there is a constant m̃ such that{

∂

∂t
−∇2

}
[K3 − ρ3] ≤ −ν̃[K3 − ρ3] + m̃e−

1
2
α̂t for |x| ≤ c̃t. (6.21)
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This inequality is just the inequality (6.12) with ρ1 replaced by K3 − ρ3,
ν replaced by ν̃, m replaced by m̃, δ replaced by 1

2
α̂, and t(η) replaced by

0. The part of the proof of Lemma 2.4 which follows the equation (6.12)
immediately leads to the conclusion that there are a positive ᾱ ≤ 1

2
α̂ and an

M3 such that the statement (2.24) of Lemma 2.6 is valid.

Proof of Theorem 2.1. Lemmas 2.4, 2.5, and 2.6 clearly imply the
statements (2.15) of Theorem 2.1.

Proof of Theorem 4.1. We see from (2.3) that{
∂

∂t
−∇2

}
q = [B(ρ)−D2(ρ)]ρ2 + 2[B(ρ)−D3(ρ)]ρ3,

Because D2 ≥ D3, this implies that{
∂

∂t
−∇2

}
q ≤ [B(ρ)−D3(ρ)]q.

Because (2.11) shows that B(ρ)−D3(ρ) is decreasing and B(K1) = D1(K1),
we see that

B(ρ)−D3(ρ) ≤ B(K1)−D3(K1) = D1(K1)−D3(K1).

Therefore, {
∂

∂t
−∇2

}
q ≤ [D1(K1]−D3(K1)]q. (6.22)

Because q(x, 0) vanishes outside a bounded set, the constant

M+ := sup
x

[
q(x, 0)e

√
D1(K1)−D3(K1)|x|

]
(6.23)

is finite. Let x1 be one of the Euclidean coordinates of the x-habitat. It is
easily verified that the function

q̄ := M+e
−
√

[D1(K1)−D3(K1)]x1+2[D1(K1)−D3(K1)]t

is a solution of the equation{
∂

∂t
−∇2

}
q̄ = [D1(K1)−D3(K1)]q̄.

Subtracting the two sides of this equation from those of the inequality (6.22)
shows that the function

v := [q − q̄]e−[D1(K1)−D3(K1)]t

satisfies the inequality {
∂

∂t
−∇2

}
v ≤ 0.

20



Because (6.23) shows that v(x, 0) ≤ 0, and because the function v is bounded
above, Proposition 6.1 shows that v ≤ 0. Therefore,

q(x, t) ≤ q̄(x, t) = M+e
−1

2
c+[x1−c+t], (6.24)

where c+ = 2
√
D1(K1)−D3(K1).

We now observe that for any prescribed point of the habitat we can
rotate the Euclidean coordinate system in such a way that this point lies on
the non-negative x1 axis. In the new coordinates x1 = |x|, while any other
coordinates are 0. Then the inequality (6.24) becomes

q(x, t) ≤M+e
−1

2
c+[|x|−c+t].

Because the right-hand side is decreasing in |x|, this shows that

sup
|x|≥ct

q(x, t) ≤M+e
−1

2
c+[c−c+]t.

When c > c+, the right-hand side approaches zero as t→∞.

Because ρ1 ≥ 0 and ρ2 ≥ 0, this implies that the suprema of both ρ1 and
ρ2 on the exterior of the ball |x| < ct approach zero uniformly. In particular,
we find the second statement in (4.2). Because ρ1 + ρ2 + ρ3 ≥ K1, we also
obtain the first statement, which finishes the proof of Theorem 4.1.

References

[1] D. G. Aronson and H. F.Weinberger, Nonlinear diffusion in popula-
tion genetics, combustion, and nerve propagation. in Partial Differen-
tial Equations and Related Topics, Lecture Notes in Mathematics 446,
Springer, New York, 1975, pp. 5-48.

[2] D. G. Aronson and H. F.Weinberger, Multidimensional nonlinear diffu-
sions arising in population genetics. Adv. in Math., 30:33-76, 1978

[3] R. A. Fisher, The advance of an advantageous genes. Ann. of Eugen.,
7:355-369, 1937.

[4] A. Friedman, newblock On two theorems of Phragmén-Lindelöf for linear
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Erratum for The retreat of the less fit allele in a population-
controlled model for population genetics by H. F. Weinberger

The proof of Lemma 2.4 is correct when the habitat is one-dimensional.
However, the fact that the function ρ̂1 defined by formula (6.14) approaches
zero on the part of the cone |x| = c̃t where x1 = 0 invalidates the argument
that ρ1 ≤ ρ̂1 for |x| ≤ c̃t when the habitat is multidimensional. This gap
is easily repaired by replacing the function coshµx1 in (6.14) by a radially
symmetric positive solution Ψ(|x|) of the equation ∇2Ψ = µ2Ψ. When the
habitat has dimension 2, one can let Ψ := I0(µ|x|) where I0 is the usual
Bessel function with imaginary argument. In three dimensions, one can let
Ψ := [sinhµ|x|]/[µ|x|].
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