Pest control may make the pest population explode
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Abstract

We present an example of a predator-prey-like system witheg-pnly state as a
global attractor, and with the additional property that #erapt to control the prey by
harvesting or poisoning both species produces solutiomghioh both populations blow
up in finite time.

Mathematics Subject Classification (2000)34A34, 34C11,37N25, 92D25.
Keywords. Blow-up, predator-prey model, linear perturbation.

One of the oldest models in population ecology is the predatey system

uy = u(a — bv)
vy = v(—c+ du),

which was discovered independently by A. J. Lotka [3] and Mt&fra [4, 5]. Volterra used
this model to explain a measured increase in the shark popuknd decrease in the popula-
tion of food fish during the decreased fishing activity causgdhe first world war. The use
of mathematical models for predicting the effect of humatioas has continued since then.
For example, the above model as well as more sophisticatéélsipredict an increase in the
average population of insect pests and a decrease of thanahanemies when one tries to
control them by using insecticide. (See, e. g., Section 1Pf
The purpose of this paper is to present a cautionary exampiehvexhibits a more dire

consequence of pest control. We shall show that a simplespweaies predator-prey-like
model has the property that the population always convexgasunique equilibrium state,
but that if the death rate of the predator is increased evsligatly, then there are initial con-
ditions for which the populations of both species blow up mté& time. Our model has the
following simple form

w = u[l +u(v—1)e™" — 4]

vy = v(ue ¥ —4)

(1)
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with the initial conditions
u(0) =ug >0, v(0)=wvy>0.

We can think ofu as the population of a prey species ands that of a predator species.
We see from the second equation that the predator alway$itsénem an increase in the prey
population. The first equation shows that the prey is harnyeghlincrease of whenever the
population lies on the set

{(u,v) : (2 —v)u < 4e"}.

The first equation also shows that outside this set, thabvissufficiently small predator den-
sity and sufficiently large prey density, the pruning praetiliby increased predation actually
benefits the prey.

We model a mechanism of control or harvesting by the pertimba

w =ull +ulv—1)e" —4v] — au
vy =v(ue ¥ —4) — Bo, (2)

wherea and/3 are nonnegative constants. Our principal result is thevoilg.

Theorem 1. If « > 0 and 5 = 0, then every solution of the systd@) with «(0) > 0
approachegmax{1 — «, 0}, 0) ast goes to infinity.

If « > 0andg > 0, there is a functionu(v) with the property that if the initial values
(ug, vo) Of (u, v) satisfy the inequality, > 1.(vo), then both components of the solution of the
systen(2) blow up in finite time.

Proof.We introduce the new dependent variables

U=ue™

V =w. (3)

The chain rule shows that (i, v) is a solution of the system (2), then

U=U(l—a-U+g8V)
V= V(U —4- ). @

Wheng = 0, the solution(U, V') of this problem with the initial valuef/y, 1) is given
by the explicit formula

(1 — O[)er(lfa)t ‘/0674t . .
=T ar =1 V= 1oall met et ) et
:Utj_1>V:VE](UOt+1)674t, if o= 1.
0

Thus every solutioriU, V') approachegmax{1 — «, 0}, 0) ast goes to infinity. The inverse

transformation .
u="Ue
v=V ()
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Figure 1: The phase plane of (4) with= 5 = 0.5. The dashed lines indicate the nullclines
of the right-hand sides of (4).

of (3) shows that every solutiam, v) of (1) with 5 = 0 also approache@nax{1 — «, 0}, 0).
Thus we have proved the first statement of the Theorem.
Wheng > 0, the system (4) has a saddle equilibrium pointlat, V*) where

3+a+p
—5

The phase plane of the system (4) is as shown in Figure 1.
It is easily seen that the sector

U :=4+ 0 andV™" :=

L={UV):0<U-U*<p(V-V*}

is a positively invariant set, and thét andV; are positive on this set. We see from Figure 1
that every trajectory which lies above the stable maniféldd, VV*) enters the set. Because
there are no equilibria other tha’™*, V*) in the closure of the set, and becaus& andV are
increasing functions of, they must have limits asapproaches infinity, and at least one of
these limits must be infinity. We conclude tHatincreases to infinity along every trajectory
in 3. Therefore, we can solve féf in terms ofl” to obtain the equation

U—-U*=p(V)(V =V (6)
for any particular trajectory. The fact that the trajectmyn > means that
0<p(V)<B.

We see by differentiating the relation (6) with respect tand using the system (4) that
satisfies the differential equation

o _ 1 U
v v-v v "




A simple calculation shows that

dp s B
e — whenV > 2V* and0 < p < —.
avV = 8(V - V) = P=7
It follows that along any trajectory iR
* /6 *
U—U" 22V =V )

for all sufficiently largeV. We plug this fact into the second equation of the systemd4) t
see thatl” must become infinite at a finite time. Because of the inequélit and because
U—-U* < p(V—V*),U must blow up at the same time &s

Because every solution which starts to the right of the stabhnifold enters the sec-
tor 3, we have shown that every such solution blows up in finite tirie stable mani-
fold is the union of two curves. One of these lies in the thawepU,V) : U — U* <
min{0, (V — V*)}} whereU; > 0 andV; < 0. The other lies in the sectdn(U,V) :
U —U* > max{0, 8(V — V*)}} whereU, < 0 andV; > 0. Thus its slope is negative, and
it can be written as the gragh = (1), wherer decreases fromo at 0 to 0 atco. We can
summarize the above result by saying that any solution off®se initial condition$Uy, V;)
satisfy the inequality/y > v(V4) blows up in finite time.

By using the transformation (5) and its inverse (3) we find thiae initial values(uy, vo)
of the system (2) satisfy the inequality > v(v,)e®, then bothu andv blow up at a finite
time. This is the second statement of the Theorem with := v(v)e’. Thus Theorem 1 is
established. 0

Remark. Proposition 1.1 of [2] gives the same result for the systenchvis obtained
from (4) by replacing the second equationlgy= V(U — 4 — 3 — «oV') where0 < ¢, < f3.

Because of the applications to population ecology, we hesticted our attention to non-
negative solutions. However, the explicit solution of tlgetem (4) withg = 0 shows that all
solutions withU, > 0 converge tqmax{1 — «, 0}, 0) and all solutions witlt/,; < 0 approach
the origin regardless of the sign B§. We obtain the same statement about the system (2) by
applying the transformation (5).

The same ideas and the same transformation (3) applied gystem

up = u[—1 4 uve™ — 4v] — fu
vy =v(ue ¥ —4) — fu (8)

show that wherd = 0 all the solutions of this system approach the origin, while $ystem
with 5 > 0 has solutions which blow up in finite time. Since the pertagbiector field points
directly toward the origin, this result seems somewhatgaeal. An explanation can be
found in the phase plane diagram of Figure 2. While all thgettaries of the equation with
£ = 0 go to the origin, many of them do so along somewhat convolpé&ids. In particular,
at the points of the curve

u=[4+ (v—1)""¢ 9)
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Figure 2: The phase planes of (8) wher- 0. The dashes indicate the curve (9) along which
the flow is in the outward radial direction.

u

with v > 1, the right-hand side of (8) is the vector figlth — 1)~ 'u, (v — 1)~'v). Therefore
the trajectory at any point of this curve moves directly adfvayn the origin. Whers > 0 the
perturbing vector field cancels this vector field at the pofrthe curve wher¢v — 1)~ = 3.
Thus this point becomes a saddle point, which leads to saisitivhich blow up in finite time.

We are grateful to Professor Jack Hale for his helpful contsjyeand to Professor Mark
Sherwin for asking at a seminar whether an earlier more cdeatpd and rather non-ecological
system has any applications.
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