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Abstract

We present an example of a predator-prey-like system with a prey-only state as a
global attractor, and with the additional property that an attempt to control the prey by
harvesting or poisoning both species produces solutions inwhich both populations blow
up in finite time.
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One of the oldest models in population ecology is the predator-prey system

ut = u(a − bv)
vt = v(−c + du),

which was discovered independently by A. J. Lotka [3] and V. Volterra [4, 5]. Volterra used
this model to explain a measured increase in the shark population and decrease in the popula-
tion of food fish during the decreased fishing activity causedby the first world war. The use
of mathematical models for predicting the effect of human actions has continued since then.
For example, the above model as well as more sophisticated models predict an increase in the
average population of insect pests and a decrease of their natural enemies when one tries to
control them by using insecticide. (See, e. g., Section 7 of [1]).

The purpose of this paper is to present a cautionary example which exhibits a more dire
consequence of pest control. We shall show that a simple two-species predator-prey-like
model has the property that the population always convergesto a unique equilibrium state,
but that if the death rate of the predator is increased ever soslightly, then there are initial con-
ditions for which the populations of both species blow up in finite time. Our model has the
following simple form

ut = u[1 + u(v − 1)e−v − 4v]
vt = v(ue−v − 4)

(1)
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with the initial conditions

u(0) = u0 > 0, v(0) = v0 ≥ 0.

We can think ofu as the population of a prey species andv as that of a predator species.
We see from the second equation that the predator always benefits from an increase in the prey
population. The first equation shows that the prey is harmed by an increase ofv whenever the
population lies on the set

{(u, v) : (2 − v)u ≤ 4ev}.

The first equation also shows that outside this set, that is, for sufficiently small predator den-
sity and sufficiently large prey density, the pruning produced by increased predation actually
benefits the prey.

We model a mechanism of control or harvesting by the perturbation

ut = u[1 + u(v − 1)e−v − 4v] − αu

vt = v(ue−v − 4) − βv,
(2)

whereα andβ are nonnegative constants. Our principal result is the following.

Theorem 1 . If α ≥ 0 and β = 0, then every solution of the system(2) with u(0) > 0
approaches(max{1 − α, 0}, 0) ast goes to infinity.

If α ≥ 0 and β > 0, there is a functionµ(v) with the property that if the initial values
(u0, v0) of (u, v) satisfy the inequalityu0 > µ(v0), then both components of the solution of the
system(2) blow up in finite time.

Proof.We introduce the new dependent variables

U = ue−v

V = v.
(3)

The chain rule shows that if(u, v) is a solution of the system (2), then

Ut = U(1 − α − U + βV )
Vt = V (U − 4 − β).

(4)

Whenβ = 0, the solution(U, V ) of this problem with the initial values(U0, V0) is given
by the explicit formula

U =
(1 − α)U0e

(1−α)t

1 − α + U0(e(1−α)t − 1)
, V =

V0e
−4t

1 − α
[1 − α + U0(e

(1−α)t − 1)], if α 6= 1,

U =
U0

U0t + 1
, V = V0(U0t + 1)e−4t, if α = 1.

Thus every solution(U, V ) approaches(max{1 − α, 0}, 0) ast goes to infinity. The inverse
transformation

u = UeV

v = V
(5)
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Figure 1: The phase plane of (4) withα = β = 0.5. The dashed lines indicate the nullclines
of the right-hand sides of (4).

of (3) shows that every solution(u, v) of (1) with β = 0 also approaches(max{1 − α, 0}, 0).
Thus we have proved the first statement of the Theorem.

Whenβ > 0, the system (4) has a saddle equilibrium point at(U∗, V ∗) where

U∗ := 4 + β andV ∗ :=
3 + α + β

β
.

The phase plane of the system (4) is as shown in Figure 1.
It is easily seen that the sector

Σ := {(U, V ) : 0 < U − U∗ < β(V − V ∗)}

is a positively invariant set, and thatUt andVt are positive on this set. We see from Figure 1
that every trajectory which lies above the stable manifold of (U∗, V ∗) enters the setΣ. Because
there are no equilibria other than(U∗, V ∗) in the closure of the setΣ, and becauseU andV are
increasing functions oft, they must have limits ast approaches infinity, and at least one of
these limits must be infinity. We conclude thatV increases to infinity along every trajectory
in Σ. Therefore, we can solve forU in terms ofV to obtain the equation

U − U∗ = ρ(V )(V − V ∗) (6)

for any particular trajectory. The fact that the trajectoryis in Σ means that

0 < ρ(V ) < β.

We see by differentiating the relation (6) with respect tot and using the system (4) thatρ

satisfies the differential equation

dρ

dV
=

1

V − V ∗

[

Ut

Vt

− ρ

]

=
1

V − V ∗

[

(β − ρ)

(

1 −
V ∗

V
+

U∗

ρV

)

− ρ

]

.
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A simple calculation shows that

dρ

dV
≥

β

8(V − V ∗)
whenV ≥ 2V ∗ and0 < ρ ≤

β

4
.

It follows that along any trajectory inΣ

U − U∗ ≥
β

4
(V − V ∗) (7)

for all sufficiently largeV . We plug this fact into the second equation of the system (4) to
see thatV must become infinite at a finite time. Because of the inequality (7) and because
U − U∗ < β(V − V ∗), U must blow up at the same time asV .

Because every solution which starts to the right of the stable manifold enters the sec-
tor Σ, we have shown that every such solution blows up in finite time. The stable mani-
fold is the union of two curves. One of these lies in the the sector {(U, V ) : U − U∗ <

min{0, β(V − V ∗)}} whereUt > 0 and Vt < 0. The other lies in the sector{(U, V ) :
U − U∗ > max{0, β(V − V ∗)}} whereUt < 0 andVt > 0. Thus its slope is negative, and
it can be written as the graphU = ν(V ), whereν decreases from∞ at 0 to 0 at∞. We can
summarize the above result by saying that any solution of (4)whose initial conditions(U0, V0)
satisfy the inequalityU0 > ν(V0) blows up in finite time.

By using the transformation (5) and its inverse (3) we find that if the initial values(u0, v0)
of the system (2) satisfy the inequalityu0 > ν(v0)e

v0 , then bothu andv blow up at a finite
time. This is the second statement of the Theorem withµ(v) := ν(v)ev. Thus Theorem 1 is
established.

Remark. Proposition 1.1 of [2] gives the same result for the system which is obtained
from (4) by replacing the second equation byVt = V (U − 4 − β − c2V ) where0 < c2 < β.

Because of the applications to population ecology, we have restricted our attention to non-
negative solutions. However, the explicit solution of the system (4) withβ = 0 shows that all
solutions withU0 > 0 converge to(max{1−α, 0}, 0) and all solutions withU0 ≤ 0 approach
the origin regardless of the sign ofV0. We obtain the same statement about the system (2) by
applying the transformation (5).

The same ideas and the same transformation (3) applied to thesystem

ut = u[−1 + uve−v − 4v] − βu

vt = v(ue−v − 4) − βv
(8)

show that whenβ = 0 all the solutions of this system approach the origin, while the system
with β > 0 has solutions which blow up in finite time. Since the perturbing vector field points
directly toward the origin, this result seems somewhat paradoxical. An explanation can be
found in the phase plane diagram of Figure 2. While all the trajectories of the equation with
β = 0 go to the origin, many of them do so along somewhat convolutedpaths. In particular,
at the points of the curve

u = [4 + (v − 1)−1]ev (9)
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Figure 2: The phase planes of (8) whenβ = 0. The dashes indicate the curve (9) along which
the flow is in the outward radial direction.

with v > 1, the right-hand side of (8) is the vector field((v − 1)−1u, (v − 1)−1v). Therefore
the trajectory at any point of this curve moves directly awayfrom the origin. Whenβ > 0 the
perturbing vector field cancels this vector field at the pointof the curve where(v − 1)−1 = β.
Thus this point becomes a saddle point, which leads to solutions which blow up in finite time.

We are grateful to Professor Jack Hale for his helpful comments, and to Professor Mark
Sherwin for asking at a seminar whether an earlier more complicated and rather non-ecological
system has any applications.

References

[1] M. K OT, Elements of Mathematical Ecology, Cambridge U. Press, 2001.

[2] Y. Y OU, T. NAGYLAKI AND W.-M. NI, On diffusion-induced blowups in a mutualistic
model,Nonlinear Analysis45, (2001), pp. 329–342.

[3] A. J. LOTKA, Elements of Physical Biology, Williams & Wilkins, Baltimore, 1925.

[4] V. V OLTERRA, Fluctuation in the abundance of a species considered mathematically,
Nature118, (1926), pp. 558-560.

[5] V. V OLTERRA, Variazioni e fluttuazioni del numero d’individui in specieanimali con-
viventi,Atti R. Accad. Naz. dei Lincei, Memorie. Ser. VI,2, (1927), pp. 31-113.

5


