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Abstract. It is shown how to construct criteria of the form f(u) ≤ f ′(0)K(u)

which guarantee that the spreading speed c∗ of a reaction-diffusion equation

with the reaction term f(u) is linearly determinate in the sense that c∗ =

2
p

f ′(0). Some of these criteria improve the classical condition f(u) ≤ f ′(0)u,

and permit the presence of sharp Allee effects. Inequalities which guarantee

the failure of linear determinacy are also presented.

1. Introduction. We consider the asymptotic spreading speed c∗ of the reaction-
diffusion equation

ut = uxx + f(u) (1.1)

in the monostable case. That is, we assume that f(0) = f(1) = 0 and f(u) > 0 for
0 < u < 1. Linearization about zero immediately shows that c∗ ≥ 2

√
f ′(0). The

spreading speed is said to be linearly determinate (or, equivalently, the linear
conjecture is said to be valid) when c∗ = 2

√
f ′(0). It is well known that the classical

condition
f(u) ≤ f ′(0)u (1.2)

implies the linear determinacy of the spreading speed of (1.1). This condition is less
restrictive than the condition f ′(u) ≤ f ′(0) introduced by Kolmogorov, Petrovski
and Piscounov [4] or the condition that the per capita net growth rate f(u)/u is
nonincreasing. Because it is difficult to calculate c∗ when it is not equal to 2

√
f ′(0),

it is useful to have other conditions of the form

f(u) ≤ f ′(0)K(u) (1.3)

which imply that (1.1) is linearly determinate
This work gives a systematic method for finding functions K(u) with K ′(0) = 1

for which the inequality (1.3) implies that (1.1) is linearly determinate. For instance,
Example 2.2 with γ = 1/2 shows that the function

K(u) = 2
[
1−
√

1− u
]

(1.4)

has this property. Since K(u) = 2u/[1 +
√

1− u] > u for 0 < u ≤ 1, the sufficient
condition (1.3) is an improvement of the classical condition (1.2).
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Section 2 presents the basic method for finding functions K(u) with the property
that the inequality (1.3) implies that the spreading speed of (1.1) is linearly deter-
minate. The idea is to require an upper bound for c∗ due to Hadeler and Rothe [3]
to be equal to the lower bound 2

√
f ′(0).

In Section 3 we present a method of constructing a complementary lower bound
for f which implies that the spreading speed of (1.1) is not linearly determinate.
The method here comes from another theorem of Hadeler and Rothe [3].

The Allee effect is defined as the property that the per capita net growth rate
f(u)/u is increasing when the population density u is sufficiently low. It was pro-
posed by Allee [1] as one possible cause of the spacial aggregation of a population
in a homogeneous environment, or of the segregation of similar species. While
Allee did not discuss the question of spreading speeds, the Allee effect is sometimes
thought to be related to the property of linear determinacy.

Wang and Kot [5], gave examples to show that an f(u) with f(u)/u neither
increasing nor decreasing for small u may or may not produce linear determinacy,

Because the function K defined by (1.4) has the property that K(u)/u is increas-
ing, the inequality f(u) ≤ K(u) which implies linear determinacy can be satisfied
by a function f with a pronounced Allee effect. In fact, we shall construct other
examples of K which permit even sharper Allee effects without harming the linear
determinacy.

Similarly, the results of Section 3 produce examples in which f(u)/u is strictly
decreasing for small u, but the spreading speed is greater than the linear speed
2
√
f ′(0). That is, the absence of an Allee effect does not prevent the failure of

linear determinacy.
Section 4 shows that an idea of Gilding and Kersner [2] can be used to extend

our results to density-dependent reaction-advection-diffusion models.

2. A sufficient condition for linear determinacy. We shall consider the spread-
ing speed of the reaction-diffusion diffusion equation (1.1) by looking at its traveling
wave solutions w(x− ct). Such a solution satisfies the ordinary differential equation

w′′ + cw′ + f(w) = 0. (2.1)

We shall assume that f is continuous in [0, 1], that it is right differentiable at 0,
and that

f(0) = f(1) = 0, f ′(0) > 0, and f(u) > 0 for 0 < u < 1. (2.2)

Let u(x, t) be a solution of (1.1) such that u(x, 0) 6≡ 0 has values in [0,1) and
vanishes outside a bounded interval. It is known that if, for a fixed value ū between
0 and 1, one defines xū(t) to be the largest value of x at which u(x, t) = ū, then
the ratio xū(t)/t has a limit c∗ as t→∞ which is independent of ū. c∗ is called
the rightward asymptotic spreading speed. It is also known that c∗ can be
characterized as the smallest value of c for which there is a nonincreasing solution
w of (2.1) with

w(−∞) = 1 and w(∞) = 0.

It is easily seen that when c < 2
√
f ′(0), every solution of (2.1) which approaches

zero must oscillate about zero, so that it cannot be nonnegative. Therefore, the
speed c of any nonnegative traveling wave must satisfy the inequality c ≥ 2

√
f ′(0),

which gives the lower bound
c∗ ≥ 2

√
f ′(0), (2.3)
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Hadeler and Rothe [3] used phase plane analysis to obtain an upper bound for
the spreading speed of the reaction-diffusion equation (1.1). Their Theorem 8 is
equivalent to the following proposition.

Proposition 1. Suppose that there are a function φ(u) which is continuous in [0, 1]
and differentiable in [0, 1) and a number c with the following properties.

a. φ(0) = 0,

b. φ(u) > 0 in (0, 1), and

c. φ(u)φ′(u)− cφ(u) + f(u) ≤ 0 in (0, 1).
(2.4)

Then the spreading speed of the equation (1.1) satisfies the inequality

c∗ ≤ c. (2.5)

Remark. In order to write the result in this form, we have replaced the function
ρ(u) in [3] by the function φ(1− u).

The right-hand side of (2.3) depends on f(u) only through its linearization at 0.
For this reason, the spreading speed of (1) is said to be linearly determinate if
it happens that c∗ = 2

√
f ′(0). In view of the lower bound (2.3), the property that

c∗ is bounded above by 2
√
f ′(0) implies that c∗ is linearly determinate. While the

idea of Hadeler and Rothe is to prescribe f and φ and search for a c such that the
inequality (2.4.c) is satisfied, we shall prescribe φ and c, and consider (2.4.c) as a
condition to be satisfied by f .

In order to implement this idea, we first observe that because φ and f are positive
in (0, 1), the inequality (2.4.c) implies that φ′(u) < c in (0, 1). Because the left-hand
side of (2.4.c) vanishes at 0, its derivative at 0 is nonpositive. That is,

φ′(0)2 − cφ′(0) + f ′(0) ≤ 0.

We now let c = 2
√
f ′(0). Then the left-hand side of this inequality is [φ′(0) −√

f ′(0)]2, so that φ′(0) =
√
f ′(0). Because f > 0 in (0, 1), (2.4.c) shows that

c = 2φ′(0) > φ′(u) in (0, 1). Thus, when c = 2
√
f ′(0), φ must satisfy the conditions

a. φ is continuous on the interval [0, 1] and continuously differentiable

in [0,1);

b. φ(0) = 0, φ′(0) > 0, φ(u) > 0 in (0, 1); and

c. φ′(u) < 2φ′(0) in [0, 1).

(2.6)

Our basic result is the following theorem

Theorem 2.1. Let φ(u) be any function which is continuous on [0, 1] and continu-
ously differentiable in [0,1), and which has the properties (2.6). Define the function

Kφ(u) := φ(u)[2φ′(0)− φ′(u)]/φ′(0)2. (2.7)

Let f(u) satisfy the conditions (2.2). If f also satisfies the inequality

f(u) ≤ f ′(0)Kφ(u), (2.8)

then the spreading speed c∗ of the equation (1.1) is linearly determinate. That is,

c∗ = 2
√
f ′(0). (2.9)
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Proof. We observe that if φ has the properties (2.6), then the same is true of any
positive multiple of φ. For a fixed function f with the stated properties, we define
the function

φ̂(u) =
√
f ′(0)φ(u)/φ′(0).

Then the defining equation (2.7) can be written in the form

φ̂(u)φ̂′(u)− 2
√
f ′(0)φ̂(u) + f ′(0)Kφ(u) = 0.

Thus if f(u) ≤ f ′(0)Kφ(u), the conditions (2.4) with c = 2
√
f ′(0) are satisfied

by φ̂. Then the Hadeler-Rothe bound shows that c∗ ≤ 2
√

f ′(0). We combine this
with the lower bound ((2.3) to see that c∗ = 2

√
f ′(0). This is the statement of the

Theorem.
Remark. The definition (2.7) shows that K ′φ(0) = 1, so that the function f ′(0)Kφ

has the derivative f ′(0) at u = 0.
The simplest choice of the function φ is the linear function φ(u) = u . In this

case, Kφ(u) = u, so that the condition (2.8) is the classical condition f(u) ≤ f ′(0)u.
The following example embeds this choice in a two-parameter family.
Example 2.1. We choose the family

φ(u) = u(1− γuδ)

with
0 < γ ≤ 1 and δ > 0.

Then the condition (2.8) becomes

f(u) ≤ f ′(0)u[1 + γδuδ − γ2(δ + 1)u2δ]. (2.10)

When
γ ≤ δ/(δ + 1).

the right-hand side of (2.10) is larger than u in (0, 1), so that the inequality (2.10)
improves the classical inequality f(u) ≤ u. If, as in Theorem 2.1, we denote the
coefficient of f ′(0) on the right-hand side of (2.10) by Kφ, we see that

[Kφ(u)/u]′ = 2γ2δ(δ + 1)uδ−1

[
δ

2γ(δ + 1)
− uδ

]
Thus, if the inequalites

0 < δ < 1 and γ ≤ δ/[2(δ + 1)]

are satisfied, Kφ(u)/u is increasing on the interval [0,1], and its derivative ap-
proaches infinity at zero. By defining f(u) = f ′(0)Kφ(u) with the exception of a
small neighborhood of u = 1 where f decreases to 0, one sees that even when f has
a very sharp Allee effect in a very large neighborhood of u = 0, the spreading speed
of (1.1) can be linearly determinate.
Remark. The case γ = δ = 1 of the above example was used by Hadeler and
Rothe [3] to show that when −l ≤ ν ≤ 2, the equation (1.1) with f(u) = u(1 −
u)(1 + νu) has the linearly determinate spreading speed 2.

The following definition is useful for analyzing the result of Theorem 2.1.

Definition 2.2. The sufficient condition

f(u) ≤ f ′(0)Kφ(u) (2.11)
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for the spreading speed of (1.1) to be linearly determinate is said to be improv-
able if there is a function φ̃ which satisfies the conditions of Theorem 2.1 and the
additional condition

Kφ̃(u) := φ̃(u)[2φ̃′(0)− φ̃′(u)]/φ̃′(0)2

≥ Kφ := φ(u)[2φ′(0)− φ′(u)]/φ′(0)2in (0, 1),

with strict equality at at least one u in (0, 1).
If there is no φ̃ with this property, the condition f(u) ≤ f ′(0)Kφ(u) is said to be

extremal.

Remark. By definition, if the conditions f(u) ≤ f ′(0)Kφ(u) and f(u) ≤ Kφ̃(u)
are both extremal and Kφ̃ 6≡ Kφ, then there must be points where Kφ̃ > Kφ and
other points where Kφ̃ < Kφ.

We note that if (2.11) is improvable, the sufficient condition f(u) ≤ f ′(0)Kφ(u)
can be improved by replacing it with the less restrictive condition f ≤ f ′(0)Kφ̃(u).
No such improvement is possible if f̂ is extremal. Thus, it is useful to characterize
the extremal functions f̂

Theorem 2.3. The sufficient condition

f(u) ≤ f ′(0)Kφ(u)

where φ satisfies the conditions of Theorem 2.1 is extremal if and only if φ satisfies
the additional conditions

φ(1) = 0 (2.12)
and

lim inf
u↘0

∫ 1/2

u

[{φ′(0)− φ′(v)}/φ(v)]dv < +∞. (2.13)

Proof. Suppose, for the sake of contradiction, that the conditions (2.12) and (2.13)
are satisfied, but that the inequality f ≤ f ′(0)Kφ(u) is improvable. That is, there is
a function φ̃ which has the properties (2.6,) such thatKφ̃ ≥ Kφ with strict inequality
somewhere. Because the expression for Kφ in (2.7) and the integral in (2.13) are
homogeneous of degree zero in φ, we may assume without loss of generality that
φ̃′(0) = φ′(0). Then the inequality Kφ̃ ≥ Kφ takes the form

φ̃(u)[2φ′(0)− φ̃′(u)] ≥ φ(u)[2φ′(0)− φ′(u)], (2.14)

with strict inequality on some open interval. This inequality can be written in the
form [φ̃2 − φ2]′ ≤ 4φ′(0)[φ̃+ φ]−1[φ̃2 − φ2], or equivalently as{

e4φ′(0)
R 1/2

u
[φ̃(v)+φ(v)]−1dv(φ̃2 − φ2)

}′
≤ 0. (2.15)

That is, the function in braces is non-increasing.
We first examine the function in braces near u = 1. Since the integral is non-

positive for u ≥ 1/2 and φ(1) = 0, we see that its limit inferior at 1 is nonnegative.
Then (2.15) shows that φ̃2 − φ2 ≥ 0 in (0, 1). Because φ and φ̃ are positive, we
have φ̃ ≥ φ in this interval. Therefore, 4/[φ̃(v) + φ(v)] ≤ 2/φ(v). Thus, the
assumption (2.13) implies that there is a sequence ui which converges to 0 such
that the the exponential function in (2.15) at ui is bounded above by a multiple
of [φ(ui)]−2. Since φ(0) = φ̃(0) = 0 and φ̃′(0) = φ′(0), the nonnegative function
[φ(ui)]−2[φ̃(ui)2−φ(ui)2] converges to 0. Thus the nonincreasing nonnegative func-
tion in the braces of (2.15) converges to 0 at u = 0. Consequently, it is identically
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zero. We have shown that, under the conditions of the Theorem, the inequality
Kφ̃ ≥ Kφ implies that φ̃ ≡ φ, so that Kφ̃ ≡ Kφ. By definition, this means that the
condition f(u) ≤ f ′(0)Kφ(u) is extremal.

To prove the necessity of the condition φ(1) = 0, we suppose that φ(1) > 0.
Then there is a positive constant m such that

φ(u) ≥ 2m for 1/2 ≤ u ≤ 1.

We define the function
φ̃(u) := φ(u)− εη(u),

where

η(u) =

{
0 for u ≤ 1/2
[u− (1/2)]2e{2φ

′(0)u−φ(u)}/m for 1/2 ≤ u ≤ 1,

and ε is a small positive constant. The formula (2.7) shows that

φ′(0)2[Kφ̃(u)−Kφ(u)] = −ε[2φ′(0)− φ′(u)]η(u) + ε[φ(u)− εη(u)]η′(u).

By using the formula for η, we see that the right-hand side is zero for u ≤ 1/2, and
that this right-hand side is given by

εη(u)
[
[2φ′(0)− φ′(u)]{−1 +m−1[φ(u)− εη(u)]}

+ 2ε[φ(u)− εη(u)][u− (1/2)][φ′(0)]−2e{2φ
′(0)−φ(u)}/m] (2.16)

for u ≥ 1/2. Because φ(u) ≥ 2m and η is bounded, we can choose a positive ε which
is so small that

φ(u)− εη(u) ≥ m for 1/2 ≤ u ≤ 1.
Then the factor in braces in (2.16) is nonnegative. Thus we find that Kφ̃(u)−Kφ(u),
which is zero for u ≤ 1/2, is bounded below by a positive multiple of [u− (1/2)] for
u > 1/2. We conclude that if u(1) > 0, then the condition f(u) ≤ f ′(0)Kφ(u) is
improvable rather that extremal.

To show that the condition (2.13) is also necessary, we suppose that it is not
satisfied by φ. That is, the integral on the left of (2.13) approaches infinity as u
goes to 0. We define

φ̃(u) = φ(u) + εζ(u)
where ε > 0 and

ζ(u) :=

{
[(1/2)− u]2φ(u)e−2

R 1/2
u
{[φ′(0)−φ′(v)]/φ(v)}dv for 0 ≤ u ≤ 1/2

0 for 1/2 ≤ u ≤ 1.
(2.17)

Because the integral in the exponential goes to infinity as u decreases to 0, ζ(u)/u
approaches zero at 0. Therefore,

ζ(0) = ζ ′(0) = 0.

It follows that
φ̃(0) = 0 and φ̃′(0) = φ′(0).

A calculation shows that for u ≤ 1/2

φ′(0)2[Kφ̃(u)−Kφ(u)] = ε[(1/2)− u]φ(u)e−2
R 1/2

u
{[φ′(0)−φ′(v)]/φ(v)}dv

{
2−

ε[(2φ′(0)− φ′(u))[(1/2)− u]3 − 2φ(u)[(1/2)− u]2]e−2
R 1/2

u
{[φ′(0)−φ′(v)]/φ(v)}dv

}
.

(2.18)



LINEAR DETERMINACY 7

Because the coefficient of ε in the factor in braces is bounded, we can choose ε so
small that this factor is positive in (0,1/2). Since Kφ̃ = Kφ in (1/2,1), we have
shown that

Kφ̃(u) ≥ Kφ(u) in [0, 1],

with strict inequality in (0,1/2). Thus the failure of the condition (2.13) leads to
the conclusion that the condition f ≤ f ′(0)Kφ is improvable, and therefore not
extremal.

We have thus established all the statements of Theorem 2.3.
We note that while φ′(u) is required to be bounded above, it may not be bounded

below. This makes it possible for an extremal function Kφ to be bounded away from
0 at u = 1.
Example 2.2. For some constant γ with

0 < γ < 1

choose
φ(u) = (1− u)γ − (1− u).

Then
φ′(u) = 1− γ(1− u)γ−1,

so that φ(0) = φ(1) = 0, φ′(0) = 1− γ, and

Kφ(u) = (1− γ)−2(1− u)2γ−1[1− (1− u)1−γ ][γ + (1− 2γ)(1− u)1−γ ]. (2.19)

Since γ < 1, both of the factors in square brackets are positive in (0, 1), so that
φ satisfies the conditions of Theorem 2.3. That is, the sufficient condition f(u) ≤
f ′(0)Kφ(u) for linear determinacy is extremal.

A simple calculation shows that

K ′′φ(u) = γ(1− γ)−1(1− u)2γ−3[2(1− 2γ)− (1− 3γ)(1− u)1−γ ].

Therefore, K ′′φ(u) > 0 in (0,1] when 0 < γ ≤ 1/2. Since Kφ(0) = 0 and K ′φ(0) = 1,
it follows that

Kφ(u) > u when 0 < γ ≤ 1/2 and 0 < u ≤ 1.
That is, when γ ≤ 1/2, the condition f(u) ≤ f ′(0)Kφ(u) is an improvement of the
classical condition f(u) ≤ f ′(0)u.

On the other hand, we note that γ > 1/2 implies that Kφ(0) = 0, so that the
extremal condition f(u) ≤ f ′(0)Kφ(0) does not improve the classical condition.

Remarks. 1. The particular case γ = 1/2 of (2.19) is (1.4) in the Introduction.
2. Note that Kφ(1) = +∞ when 0 < γ < 1/2.
3. If the function φ in the above example is replaced by

φ(u) = (1− u1+δ)γ − 1 + u

with 0 < γ < 1 and δ > 0, then Kφ behaves like the Kφ in the preceding example
at u = 1, and like the right-hand side of (2.10) at u = 0. In particular, if δ > 0 and
0 < γ < δ/[2(δ + 1)], then Kφ(u)/u is increasing at an unbounded rate near u = 0,
while Kφ(1) =∞.
Example 2.3. Choose

φ(u) = u

{
1− 1

1 + ln(1/u)

}
.

Then

Kφ(u) = u

{
1− 1

[1 + ln(1/u)]3

}
.



8 HANS WEINBERGER

The condition f(u) ≤ f ′(0)Kφ(u) is clearly improved by the classical condition
f ≤ u, even though φ(1) = 0. This is consistent with Theorem 2.3 because the
condition (2.13) is violated.

Integrating the definition (2.7) and using the fact that φ′(u) < 2φ′(0) shows that∫ 1

0

Kφ(u)du ≤ 1,

However, this averaging result does not prevent Kφ from being large at some points.
Example 2.4. Choose a u0 in (0, 1), and define

φ(u) := u[arctanα(1− u0)− arctanα(u− u0)].

It is easily verified that φ satisfies the conditions (2.6) and (2.13), and that φ(1) = 0.
The corresponding extremal function is

Kφ(u) = φ(u){arctanα(1− u0) + 2 arctanαu0 + arctanα(u− u0)

+ αu/[1 + α2(u− u0)2]}/{arctanαu0 + arctanα(1− u0)}2.

We observe that Kφ(u) can be made arbitrarily large on the interval |u−u0| ≤ 1/α
by choosing α sufficiently large. On the other hand, Kφ remains uniformly bounded
on the set |u− u0| ≥ α−1/2. Thus for large α, Kφ has a large peak at u0.

By choosing φ to be a convex linear combination of these functions with different
values of u0, we can obtain an extremal function which has arbitrarily large peaks
on any prescribed finite set of points of the interval (0, 1).

3. Conditions for the violation of linear determinacy. Just as the upper
bound of Hadeler and Rothe [3] leads to to a sufficient condition for the spreading
speed of (1.1) to be linearly determinate, another theorem of Hadeler and Rothe [3]
leads to a sufficient condition for the failure of (1.1) to be linearly determinate.

Theorem 3.1. Choose any function φ which satisfies the conditions (2.6), and the
additional conditions

φ(1) = 0, (3.1)

sup
0≤u<1

φ′(u) < (2− ε)φ′(0) for some constant ε with 0 < ε < 1, (3.2)

and
lim
u↗1

φ(u)φ′(u) = 0. (3.3)

Define the function

Lφ,ε(u) := φ(u)[(2− ε)φ′(0)− φ′(u)]/[(1− ε)φ′(0)2]. (3.4)

Then the condition
f(u) ≥ f ′(0)Lφ,ε(u) for 0 ≤ u ≤ 1 (3.5)

implies that the spreading speed c∗ of the equation (1.1) satisfies the inequality

c∗ ≥
√
f ′(0)(2− ε)/

√
1− ε. (3.6)

Moreover,
(2− ε)/[

√
1− ε > 2, (3.7)

so that the spreading speed of (1.1) is not linearly determinate.
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Proof. Define the function

f̂(u) := f ′(0)Lφ,ε(u), (3.8)

and the number
ĉ :=

√
f ′(0)(2− ε)/

√
1− ε. (3.9)

We note the identity [
(2− ε)/

√
1− ε

]2 = 4 +
[
ε2/(1− ε)

]
. (3.10)

This immediately gives the inequality (3.7), so that

ĉ > 2
√
f ′(0). (3.11)

The inequality (3.2) and the assumptions (2.6), (3.1), and (3.3) show that Lφ,ε >
0 in (0,1) and Lφ,ε(1) = 0, so that f̂(0) = f̂(1) = 0 and f̂ > 0 in (0, 1). The definition
(3.4) shows that

L′φ,ε(0) = 1, (3.12)
so that

f̂ ′(0) = f ′(0).
If we define the new function

φ̂(u) := [
√
f ′(0)φ(u)]/[

√
1− εφ′(0)],

the definition (3.4) can be written in the form

φ̂(u)φ̂′(u)− ĉφ̂(u) + f̂(u) = 0. (3.13)

This is the phase-plane equation of a traveling wave of speed ĉ for the equation
(1.1) with f replaced by f̂ . Moreover, we see from (3.10 that

φ̂′(0) =
√
f ′(0)/

√
1− ε = (1/2)[ĉ+

√
ĉ2 − 4f ′(0)]. (3.14)

The plus sign on the right shows that the phase-plane trajectory w′ = −φ(w) lies
below all the other trajectories which approach the origin in the fourth quadrant.
Theorem 7 of Hadeler and Rothe [3] states that this implies that ĉ is the spreading
speed of the equation (1.1) with f replaced by f̂ . For the sake of completeness, we
sketch the proof of this statement.

We suppose for the sake of contradiction that there is a traveling wave w(x− c̃t)
of the equation (1.1) with f replaced by f̂ for some c̃ with

2
√
f ′(0) ≤ c̃ < ĉ.

Then the corresponding phase plane equation has a trajectory w′ = −φ̃(w), and φ̃
satisfies the equation

φ̃(u)φ̃′(u)− c̃φ̃(u) + f̂(u) = 0 (3.15)
and the conditions

φ̃(0) = φ̃(1) = 0 and φ̃(u) > 0 in (0, 1).

By differentiating the equation and setting u = 0, we obtain a quadratic equation
for φ̃′(0) whose solution is

φ̃′(0) = (1/2)[c̃±
√
c̃2 − 4f̂ ′(0).

Because f̂ ′(0) = f ′(0), c̃ < ĉ, and the identity (3.14) is valid, we find that

φ̃′(0) < φ̂′(0).
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Since both φ̃ and φ̂ vanish at zero, we find that φ̂(u)− φ̃(u) is positive in some open
interval whose left end point is 0.

In the interval (0, 1) we solve (3.13) for φ̂′(u) and (3.15) for φ̃′(u) and subtract
to find that

[φ̂(u)− φ̃(u)]′ = ĉ− c̃+ [φ̂(u)− φ̃(u)]f̂(u)/[φ̂(u)φ̃(u)].

In particular, this shows that

[φ̂(u)− φ̃(u)]′ ≥ ĉ− c̃ > 0 when φ̂(u)− φ̃(u) ≥ 0 (3.16)

This inequality says that if φ̂(u) − φ̃(u) vanishes at a point in (0, 1), then this
function is negative immediately to the to the left of this point. Therefore, the
interval with left end point 0 where φ̂− φ̃ > 0 cannot end in (0, 1). Thus, φ̂− φ̃ is
positive in (0, 1). Hence the inequality (3.16) holds in [0, 1]. Integration then shows
that

φ̂(u) ≥ φ̃(u) + [ĉ− c̃]u
Since φ̃ ≥ 0 and c̃ < ĉ, this inequality would contradict the fact that

φ̂(1) =
√
f ′(0)φ(1)/[

√
1− ε]φ′(0)] = 0.

This contradiction shows that if c̃ < ĉ, the equation (1.1) with f replaced by f̂ has
no nonincreasing traveling wave solution w(x− c̃t) with w(−∞) = 1 and w(∞) = 0.
That is, ĉ is the minimum of the speeds of such wave. Hence ĉ is also the spreading
speed of the equation (1.1) with f = f ′(0)Lφ,ε. This is the statement of Theorem
7 of [3].

A simple comparison argument shows that increasing the function f does not
decrease the spreading speed c∗ of (1.1). This and the above result show that if
f ≥ f ′(0)Lφ,ε, then c∗ ≥ ĉ. We have thus proved Theorem 3.1.

Remarks. 1. The special case of this theorem with φ(u) = u(1 − u) and ε =
(ν−2)/ν was used by Hadeler and Rothe [3] to show that when ν > 2, the equation
(1.1) with f(u) = u(1− u)(1 + 2ν) has the spreading speed c∗ =

√
ν/2 +

√
2/ν.

2. Once (3.2) is satisfied, the conditions (3.1) and (3.3) are equivalent to the
property that Lφ,ε(1) = 0. If Lφ,ε does not have this property, there is no f with
f ≥ f ′(0)Lφε and f(1) = 0, so that the statement of Theorem 3.1 becomes vacuous.
Example 3.1. Choose

φ(u) = u(1 + u1/2 − 2u).
Then the condition (3.2) is satisfied when ε < 55/64. We choose ε = 1/2, and
calculate

Lφ,1/2 = u(1 + u1/2 − 2u)(1− (3/2)u1/2 + 4u).

Because the function Lφ,1/2(u)/u behaves like 1 − (1/2)u1/2 near 0, its derivative
approaches −∞ at 0, so that Lφ,1/2/u is strictly decreasing for all sufficiently small
u. Thus for the function f(u) = Lφ,1/2 there is no Allee effect, but the spreading
speed of the equation (1.1) is not linearly determinate.

We note that if the condition (3.2) is satisfied for one value of ε, it is also satisfied
for any smaller positive value of ε. The definitions (3.4) and (2.7) show that

Lφ,ε(u) = Kφ(u) + [ε/(1− ε)]φ(u)[φ′(0)− φ′(u)]/φ′(0)2. (3.17)

Therefore, if the function φ′(0)− φ′(u) takes on both positive and negative values,
then the conditions f ≤ f ′(0)Lφ,ε for different values of ε are not comparable.
However, if, as in Examples 2.1 and 2.2, φ′(u) < φ′(1) in (0, 1), then the inequality
(3.5) becomes less stringent when ε is reduced to another positive value. It is then
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worthwhile to look at the limiting behavior of this inequality as ε decreases to 0.
Of course, Lφ,ε converges to Kφ as ε goes to 0.

Theorem 3.2. Suppose that φ(u) satisfies the conditions of Theorem 3.1, and that,
in addition,

φ′(u) < φ′(0) for 0 < u < 1. (3.18)

Let f(u) satisfy the conditions (2.2) and the three additional conditions

f(u) > f ′(0)Kφ(u) for 0 < u < 1,

lim inf
u↘0

f(u)− f ′(0)Kφ(u)
φ(u)[φ′(0)− φ′(u)]

> 0, and

lim inf
u↗1

f(u)− f ′(0)Kφ(u)
φ(u)[φ′(0)− φ′(u)]

> 0.

(3.19)

Then the spreading speed c∗ of (1.1) is not linearly determinate. That is, c∗ >
2
√
f ′(0).

Proof. By (3.17) we can write the condition f(u) ≥ f ′(0)Lφ,ε(u) in the form

f(u)− f ′(0)Kφ(u) ≥ [ε/(1− ε]f ′(0)φ(u)[φ′(0)− φ′(u)]/φ′(0)2.

Because the right-hand side is positive in (0, 1), there is a positive ε for which this
inequality is satisfied if and only if the ratio of the left-hand side to the function
φ(u)[φ′(0) − φ′(0)] is uniformly positive. The three conditions (3.19) are clearly
necessary and sufficient for this to be the case.

Remarks. 1. Although the same function Kφ appears in both Theorems 2.1
and 3.2, it must be remembered that inequalities give only a partial ordering of
functions. That is, there are many functions which satisfy neither f ≤ f ′(0)Kφ nor
f ≥ f ′(0)Kφ.

2. As usual, the denominator in the last two inequalities can be replaced by any
function with the same asymptotic behavior at 0 or at 1. Moreover, Kφ can then
be replaced by any approximation with the property that the ratio of its difference
from Kφ to the denominator approaches 0.
Example 3.2. Choose

φ(u) = u(1− u).

Then
Kφ(u) = u(1 + u− 2u2),

and
φ′(0)− φ′(u) = 2u.

Thus, φ(u)[φ′(0)−φ′(0) behaves like 2u2 near 0 and like 2(1−u) near 1. Therefore
the three conditions in Theorem 3.2 become

f(u) > u(1 + u− 2u2) in (0, 1),

lim inf
u↘0

{[f(u)− f ′(0)(u+ u2)]/u2} > 0,

and
lim inf
u↗1

{[f(u) + 3f ′(0)(1− u)]/[1− u]} > 0.

If f is twice differentiable at 0, the condition at 0 becomes

f ′′(0) > 2f ′(0).
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If f is differentiable at 1, the condition at 1 becomes

f ′(1) < −3f ′(0).

Because the condition f ≥ Lφ,ε becomes less stringent when Lφ,ε is decreased, it
can be useful to apply Theorem 3.2 to functions φ for which Kφ is not extremal.
Example 3.3. As in Example 2.3, we let

φ(u) = u

{
1− 1

1 + ln(1/u)

}
.

Then

Kφ(u) = u

{
1− 1

[1 + ln(1/u)]3

}
,

and

φ(u)[φ(u)φ′(0)− φ′(u)] = u

{
1

1 + ln(1/u)
− 1

[1 + ln(1/u)]3

}
.

Thus, the conditions of Theorem 3.2 become

f(u) > u

{
1− 1

[1 + ln(1/u)]3

}
in (0,1),

lim inf
u↘0

{ln(1/u)[f(u)− f ′(u)u]/u} > 0,

and
lim inf
u↗1

{[f(u)− 3f ′(0)()1− u)]/[1− u]} > 0.

If f is differentiable at 1, the condition at 1 says that f ′(1) < −3f ′(0). However,
the condition at 0 implies that f ′′(0) does not exist.

4. Density-dependent diffusion and advection. It was observed by B. H. Gild-
ing and R. Kersner [2] that the bounds of Hadeler and Rothe are easily extended
to the density-dependent reaction-advection-diffusion equation

ut = d(u)uxx − a(u)ux + f(u) (4.1)

with d(u) > 0, f(0) = f(1) = 0, and f > 0 in (0, 1). In this case, the lower bound
for the rightward spreading speed c∗ which is obtained by linearizing the equation
is

c∗ ≥ 2
√
d(0)f ′(0) + a(0).

The Hadeler-Rothe bound says that if for a suitable function φ

d(u)φ(u)φ′(u)− [c− a(u)]φ(u) + f(u) ≤ 0 in (0, 1),

then
c∗ ≤ c.

By setting c = 2
√
d(0)f ′(0) + a(0) and proceeding as in the proof of Theorems 2.1

and 2.3, we obtain the following extension.

Theorem 4.1. Let the function φ(u) satisfy the conditions

φ(0) = 0, φ(u) > 0 in (0, 1), and

d(u)φ′(u) + a(u) < 2d(0)φ′(0) + a(0) in (0, 1).

Define the function

Kφ(u) := φ(u)[2d(0)φ′(0) + a(0)− d(u)φ′(u)− a(u)]/[d(0)φ′(0)2]. (4.2)
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Then if
f(0) = f(1) = 0, f(u) > 0 in (0, 1), and

f(u) ≤ f ′(0)Kφ(u) in [0, 1],

the rightward spreading speed of the reaction-advection-diffusion equation (4.1) is
linearly determinate. That is, c∗ = 2

√
d(0)f ′(0) + a(0).

Moreover, the condition f ≤ f ′(0)Kφ is extremal if and only if φ(1) = 0, and

lim inf
u↘0

∫ 1/2

u

2d(0)φ′(0) + a(0)− 2d(v)φ′(v)− a(v)
d(v)φ(v)

dv < +∞.

The obvious extension of the proof of Theorem 3.1 shows that the statement
of this theorem is still valid for the equation (4.1), provided the condition (3.2) is
replaced by

d(u)φ′(u) + a(u) < (2− ε)d(0)φ′(0) + a(0),
and the definition (3.4) of Lφ,ε is replaced by

Lφ,ε(u) :=φ(u)
{

(2− ε)d(0)φ′(0) + a(0)

− d(u)φ′(u)− a(u)]
}
/{(1− ε)d(0)φ′(0)2}.

The statement of Theorem 3.2 remains valid when the the function φ′(0)− φ′(u) is
replaced by d(0)φ′(0) + a(0)− d(u)φ′(u)− a(u).
Example 4.1. Consider the family of equations

ut = (1 + u)uxx − α(1− 3u)ux + f(u) = 0.

Choose
φ(u) = u(1− u).

Then
Kφ(u) = u(1− u)[1 + (1 + 3α)u+ 2u2],

d(0)φ′(0) + a(0)− d(u)φ′(u)− a(u) = (1 + 3α)u+ 2u2,

and
Lφ,ε = Kφ(u) + [ε/(1− ε)]u(1− u)[(1 + 3α)u+ 2u2].

Kφ and Lφ.ε are positive in (0, 1) so that the extensions of Theorems 2.1, 2.3, and 3.1
can be applied when

α > −[2
√

2 + 1]/3.
The extension of Theorem 3.2 can only be applied when

α ≥ −1/3.
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