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Some lsopeflmetric Inequalit ies for Membrane Frequencies
and Torsional Rltldlty*

I. Ir.rrRoDUcrIoN

Let .4 denote the tundamental Irequency of a two-dimensional
membrane G fix€d on its boundary. Let .4 b€ tll€ area oI G, and t its
perimeter. Makai 15, 6l has recenuy sho{n that it C is simply or doubly
connected, the dimensionless quantity ,49 ,4 N Z-r is at most S. P6lya
f7l has imDroved tltis result to

A' <(l. 'Y L' A ' (r.r)
The coNtant (lz)' is optinal, since equality is attained in the limiting
cas€ of an infinite rectangular strip. To obtain tlese results Makai and
P6b'a insert in the mhimum principle for lt tunctions which depend
orny on the distarce from tle boundary.

Intlispaper we apply a similar methodto at o-dimensional membrane
G fix€d on its exterior bounding curve Co. Tlrc membrane is permitted
to have interior bourding curves Cr Goles) along which it is lree, We
sha show tlat among all such membmn€s with given area I and given
p€rimeter , of C0 the high€st tundanental frequency is attain€d when
G is ainular.

This fait gives the upp€r bound

A{2nL tP

whele p is the towest root of the transcendental €quation

I olt')Y rlpY) : Yotr')Jt(pY)

Y2: | - 4flAl-z.

(r.2)

0.3)

(r.4)
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MEI{BRANE TREOUENCIES -{I{D TORSIONAL RIGID]TY 2II

The classical isoperimetdc inequality lt, p. 831 sho!.s that the expression
on the right of (1..t) is always nonnegative, and vanishes if ,nd only if G
is a circle. T|e soluiion of (r.3) is sraphed in Jahnke and Emde lB,
pp. 207-2081. If G is simply-connected the inequality (1.2) is an
improvement of (r.1).

The same method yields m isoperimetric inequality for membrdcs c
which are elastically supportcd on Co and free along any inner botrndaries
C;. The annular membrane has the largest lundamental lrequency
among all sucli membranes ol given dea, p€dmeter of C0, and elasiic

In a similar manner {e find a lower bound for the torsional rigidity
of a simply connectcd domain. Again we obtain an improvemcnt of
the inequalities of llatai 15,61 and P6lya l7l.

The inequalities of Makai and P6tya for the lundamental frequency
and torsional rigidiiy hold for doubly connected (dns shapcd) as vell
as simply connected domains C.

Our bound (t.2) for the fundamental frcqrcncy applies when onty
the outer bounddl' C0 ol G is fixcd. However, ve may obtain a bound
lor a nenbranc G $hich is fixed along Co and along one or more iDner
boundarics Cr. To do this, we replace c by a membrane C which occupies
the same domain and whose boundaries are fixed whercver those of c
de fixed, as well as along straight line paths conneding the fixed boundary
components. -fhen the iundamental frequency,4 ol G is geater than ',1.
Moreover, d is fixed along a singlc cu e e0 consisting of the iixed boundary
components of C together with the connecting paihs, covered twice.
The perimeter Z of C; exceed, the total length t of the fixed boundary
components of G by twicc the total length of connecting lines. The arca
of G is again ,,1.

Thus, \re obtain the bound (1.2) with Z rcplaced bv t in (1.2) and
(r.a). Whcther or not this bound is better than (l.l) wher G is rins-
shaped depends upon the location of the hole-

Similar remarks apply to the to$ional rigidity of multipty connccted

IL TTiE FUNDAT,TENTAL FREeuElicl.

Let G be a plane domain lying inside a sirnple closed boundiry curve
C0, and possibiy having interior holes bounded by snooth curves q.
Let l! be the lowest eigenvalue of the memhane problem:

lu+ 1 'v:  o in G
(2.1)
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It is wdl known -341i
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Ir, pp : ; 9, p. 871 that

rl '  dx dy

whoe r is any decewise continuously diferentiable tunction van-
ishing otr Co.

We defirc Cd to be the curve cocisting of Points inside Co at distance

,t {rom C0. It was shown by Sz.-N€y llll that the lengtl ,{d) oI Cd

is wel derined lor alnost all valu€s of d, and t]al (dJ r 2'd is non-
incr$sing in d. Thus if l(d) is t}le length of the portion of C, which li€s
in C,

(d) <rid) <. 2'rt {2.3)

wrrere r : 4o) is the length of Co.
Let r(6) be the area of the portion of G lvins betwen Co ard Cd. Tb€*'

I
4(6) : I (d) dd. 12.4\

,J

Intesrating (2.3) eives

4(d) < 16- ndc. {2.6)

lnsertins (2.s) in tbis inequaii'y y'elds

We define a function /(d) by

(2.7)

l (
I lt, dx d.y
J)

hxr l r :L,_4 4(6).

I1 we interpret this equation as a mapping of the portion of Cr in G onto
the circte of radius /(d), we find tlat Co js mapped into a cirde of equal
pedmeter and that the portion of G between C0 and C, goes into an
annulus o{ equal area d{d). We differentiate (2.7) ard use (2.6) artd the
Iact tllat

-  gradd:r (2.8)

j
I
I

I
I
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aLnost everi.where to show that

lgrad / r< r (2.e)

almost everywhere in G.
we now let the function v in {9.2) depend only otr /. In viev of (2.9),

/  ) - \2

*,"0, ,<(; /

Since the mappins (2.7) is area-preseffing, (2.2) becomes

t /d,\ '
) \*  )  " '

'r '<';; - (2 rr)
f "
J

\ : (L' _ 4,rA)tlz 121t. = LV lza,
\2.r2)

t,: Ll2n,

and {, is any diflerentiable function o{ / satisfying

, (d-o (2.r3)

A<2 L-L t t .

The right-hand side of (2.rr) is the Rayleigh quotient for the annular
rnernbrane d whose ar€a is ,4 and whose outer boundary has perimeter

-r-. Its minimum under th€ condition i2.r3) is the lowest eisenvalue for

the membrane e fired on the outer bortnda.ry and frce along the inner

boundary. Thus we have established that d has the highest fundaEental
frcquency among aI membranes C with given I ard Z.

The minimum value ol the expression on th€ right of (2.11) is attained

N: lo\2i'L-t p4Yo\i- Yol2,L-t pr)Jo1r) (r.14)

wh€re p is determined in such a way that t,'(t) - 0. lt is the lowest
mot ol the Eq. (r.3) (cf. 13, pp. 207 2081), and therefore d€pends upon
the dimensionless quantity P defined by (r.4). Substituting (2.14) in
(9.r1) leads to the bound

(2.r0)

(2.r5)



If G has no holes Cr, a lo{'er bound Ior -4r in terms of the alea '4 is

given by the isoperimetric inequalitv oI Faber l2l and Itla}ln lal'

214 PAI-NE A}.ID 1trEINBERGER

x : J r(j @A-t \t2 - / L\l't')'

which satisfies (2.13), we obtain the upper bound

,L'2 ri, A-t.

Here l(^r 2.aoa8) is the filst zero oI the Bessel function /0 Equaritv

in (2.16) is attained when G is a circle.

If in (2.11) we choose

A' <#i 'A ttr + (/1-r(, - l)yi,0 - y!) 1l

<ni, A-r lr + 2.7r2V20 - Yz) l.

(2.r6)

(2.r7)

(2.r8)

Here Va is the dimensionless quantitv defined bv (r'4)' Agah equalitv

is attaircd when G is a circle-

Tbe ioequal i l i€s (216) and (2 18) sbow rhat i f  G is simPl) 'onnPclFd
An.t nearlv;irc'rlar in the s€ns€ that W;s smal, tbe turdamenldl fieqtren' v
,4 is near that of the cirde oI eqlral area'

Shce the tu4ction (z.ra) yields the b€st upP€r bound for '4'z'
inequality (2.rq is in geneml sharper than (2 r8)'

IIL TsE ELAsrrcALlY SUP?oRTED MEMBRANE

We consider the lowest eigenvarue ,4r(t) of the problem

/u+1,u. :0 in G,

aulan + hu:o on Co

on Ci.

The elastic constant t is positive For anv pi€€€wise continuously

difierentiable tunction r;have the ircquaritv (cf lr' pp' 345-3461)'

[ [ ls ,"a, l "a 'ar+I$"a'
t  \n)<t  r i -  

;

\ )v '  
d 'cdv
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We intrcduce the new variable / as in Section II and let x' be a iunction
of / only. This gives the upper bound

l l4l r dt + zr*t"r\t"\
J \at /

,1s(*)<'L (3.3)

\4.2)

I
)

where ,"r and r, are siven by (9.r2). The risht hard side o{ (8.3) is the
Ravleigb quot jFnr ior the annujar membrane 6 ol  arpa i{  eldjr i ,JI \
quppof led {wrth Fldsr ic.on-ranr })  on I ' rF outer boundary ot per imFr" l
Z, ard free on the inner boundary. The minimum of the Rayteigh quotient
rs th€ lowest eigenvalu€ of this memblane. Thus we have shown thar
G gives the highest lundamental {rcquency among all membran€s G of
giren A, L, and i. This lact leads to the uDDer bourd

,1lh) <27'L-L p (3.4)

where p is tne towelt rcot of the equation

vlpY)lhLlo?t) - 2lphu,)t: J,1p)lhLyoat) _ 2tupy{p)]. (3.6)

If; in problem (3.1) is a nonnegative function ol arc tength rather
than a constant, the in€quatity (3.4) stil hotds with iZ in (3.5) replaced
by {c" ; ds.

IV. ToRsroNAL RrcrDtrl.

Let G be a simply comected domain of area ,4 bounded by the closed
curve C0 of pelimeter t. The torsional rigidity p of G is defined by
19, p. 871.

{4.r)

among sulliciently resllar functiors 
'' 

which vanish on C..
W" def ine rhe vanablF 

'  
as in seLUon 2 and ler

, :  j  o; - , ' t  +,,"t  e|.

I  f  i  ls
l r  l l ,d(dvl

I  |  grad, r / rdy
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Using the results of Section II Ieads immediately to the bound

p>A! t  -  zv,r t  -  v ' r  -r  -  4q1(l  -  ' t l ' ) - !  ro8 vl

vhere g is given by (1.a). An upp€r bound for P in terms of ,4 is
by the isop€dmetdc inequality

P < A'l2a

Again w€ see that if G is tready circular in the sense that Y is
its torsional dgidity is ctose to that ol the €ircle of equal area

which w6 coniectured by St. Venant Lr0l and proved by P6lya
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