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I. INTRODUCTION

Let /A denote the fundamental frequency of a two-dimensional
membrane G fixed on its boundary. Let 4 be the area of G, and L its
perimeter. Makai [5, 6] has recently shown that if & is simply or doubly
connected, the dimensionless quantity A2 A2L-2% is at most 3. Pélya
[7] has improved this result to

A2 < (3m)2L2 A2, (L.1)

The constant (}m)? is optimal, since equality is attained in the limiting
case of an infinite rectangular strip. To obtain these results Makai and
Pélya insert in the minimum principle for A% functions which depend
only on the distance from the boundary.

In this paper we apply a similar method to a two-dimensional membrane
G fixed on its exterior bounding curve C,. The membrane is permitted
to have interior bounding curves C; (holes) along which it is free. We
shall show that among all such membranes with given area 4 and given
perimeter L of C, the highest fundamental frequency is attained when
G is annular.

This fact gives the upper bound

A< 2al1n (1.2)
where g is the lowest root of the transcendental equation
Tol) Y1 () = Yo(u) J1 () (1.3)

W2 — | —dmAL-2. (1.4)

with
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The classical isoperimetric inequality [1, p. 83] shows that the expression
on the right of (1.4) is always nonnegative, and vanishes if and only if G
is a circle. The solution of (1.3) is graphed in Jahnke and Emde [3,
pp- 207—208]. 1If G is simply-connected the inequality (1.2) is an
improvement of (1.1).

The same method yields an isoperimetric inequality for membranes G
which are elastically supported on C, and free along any inner boundaries
C;.  The annular membrane has the largest fundamental frequency
among all such membranes of given area, perimeter of C,, and elastic
constant.

In a similar manner we find a lower bound for the torsional rigidity
of a simply connected domain. Again we obtain an improvement of
the inequalities of Makai [5,6] and Pdlya [7].

The inequalities of Makai and Pélya for the fundamental frequency
and torsional rigidity hold for doubly connected (ring-shaped) as well
as simply connected domains G.

Our bound (1.2) for the fundamental frequency applies when only
the outer boundary C, of G is fixed. However, we may obtain a bound
for a membrane G which is fixed along C, and along one or more inner
boundaries C;. To do this, we replace G by a membrane  which occupies
the same domain and whose boundaries are fixed wherever those of G
are fixed, as well as along straight-line paths connecting the fixed boundary

components. Then the fundamental frequency A of G is greater than A.
Moreover, G is fixed along a single curve C consisting of the fixed boundary
components of G together with the connecting paths, covered twice.
The perimeter L of C; exceeds the total length L of the fixed boundary
components of ¢ by twice the total length of connecting lines. The arca
of G is again 4.

Thus, we obtain the bound (1.2) with L replaced by L in (1.2) and
(1.4). Whether or not this bound is better than (1.1) when G is ring-
shaped depends upon the location of the hole.

Similar remarks apply to the torsional rigidity of multiply connected
domains.

II. THE FUNDAMENTAL FREQUENCY

Let G be a plane domain lying inside a simple closed bounding curve
Cy, and possibly having interior holes bounded by smooth curves C;.
Let A2 be the lowest eigenvalue of the membrane problem:

Aut+ A2u =0 in G
=20 on C, (2.1)
dufon =0 on C;.
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It is well known [1, pp. 345—3846; 9, p. 87] that
Es lgrad v|2dx dy

A< & }
Egvgdxdy

&

(2.2)

where v is any piecewise continuously differentiable function van-
ishing on C,.

We define C,4 to be the curve consisting of points inside C at distance
§ from C, It was shown by Sz.-Nagy [11] that the length id) of C;

is well defined for almost all values of 4, and that () + 2x6 is non-
increasing in 8. Thus if }(8) is the length of the portion of C; which lies
in G,

1(0) < I(8) < L — 278 (2.3)

where L = 1(0) is the length of C,.
Let a(d) be the area of the portion of G lying between (g and €. Then

a(d) = 5 1(0) dé. (2.4)
0
Integrating (2.3) gives
a(8) < Lé— md*. (2.5)

Inserting (2.3) in this inequality yields
(-@)2 =12 L — 4ma(d). (2.6)
dé
We define a function #{d) by
472r2 = L2 — dora(d). (2.7)

If we interpret this equation as a mapping of the portion of C; in G onto
the circle of radius #(8), we find that C, is mapped into a circle of equal
perimeter and that the portion of G between C, and Cj goes into an
annulus of equal area a(8). We differentiate (2.7) and use (2.6) and the
fact that

|grad 8| =1 (2.8)
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almost everywhere to show that
lgrad 7|2 1 (2.9

almost everywhere in G.
We now let the function v in (2.2) depend only on r. In view of (2.9),

|grad » |2 g(%) : (2.10)

Since the mapping (2.7) is area-preserving, (2.2) becomes

Fra g
&)+

/12“'“<-[1'r2' ——, (2.11)
51:2?:%

where
ry = (L% — 4mA)V227n = LYV |2,
(2.12)
rg= L{2m,
and v is any differentiable function of » satisfying

v(ry) = 0. (2.13)

The right-hand side of (2.11) is the Rayleigh quotient for the annular

membrane G whose area is 4 and whose outer boundary has perimeter
L. Tts minimum under the condition (2.13) is the lowest eigenvalue for

the membrane G fixed on the outer boundary and free along the inner

]

boundary. Thus we have established that & has the highest fundamental
frequency among all membranes G with given 4 and L.

The minimum value of the expression on the right of (2.11) is attained
tor

v= Jo@nL=1 pr) Yo(u) — Yo@mL~ un) Jolp) (2.14)

where u is determined in such a way that v'(r;) = 0. It is the lowest
root of the Eq. (1.3) (cf. [3, pp. 207—208]), and therefore depends upon
the dimensionless quantity ¥ defined by (1.4). Substituting (2.14) in
(2.11) leads to the bound

AL 2l . (2.15)
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If G has no holes C;, a lower bound for A2 in terms of the area A is
given by the isoperimetric inequality of Faber [2] and Krahn [4].

A2> w2 A, (2.16)

Here j(av 2.4048) is the first zero of the Bessel function J,. Equality
in (2.16) is attained when G is a circle.

If in (2.11) we choose
v = Jo(j A — 1)), (2.17)
which satisfies (2.13), we obtain the upper bound
A2 < aP AL+ (%) — PR — 997 .
< 7P A1+ 2712921 — PR, s

Here W2 is the dimensionless quantity defined by (1.4). Again equality
is attained when G is a circle.

The inequalities (2.16) and (2.18) show that if G is simply connected
and nearly circular in the sense that ¥ is small, the fundamental frequency
A is near that of the circle of equal area.

Since the function (2.14) yields the best upper bound for A% the
inequality (2.15) is in general sharper than (2.18).

III. TeE ELASTICALLY SUPPORTED MEMBRANE

We consider the lowest eigenvalue A2%(k) of the problem
Au4+ A2u=0 in G,
dufon + ku =0 on Cy, (3.1)
dujon =0 on C;.

The elastic constant & is positive. For any piecewise continuously
differentiable function v we have the inequality (cf. [1, pp. 345—346]).

ES lgrad v|2dxdy + &k g; v2ds

Y L) L A (3.2)

E S vidxdy
'




MEMBRANE FREQUENCIES AND TORSIONAL RIGIDITY 215

We introduce the new variable 7 as in Section I and let v be a function
of r only. This gives the upper bound

Ty

dv

[ 2
j (_r?.r) v dr + 2akry v3:(r,)
ARy B —~ (3.3)

[var dr

81

where 7, and 7, are given by (2.12). The right hand side of (3.3) is the

Rayleigh quotient for the annular membrane G of area A elastically
supported (with elastic constant %) on the outer boundary of perimeter
L, and free on the inner boundary. The minimum of the Rayleigh quotient
is the lowest eigenvalue of this membrane. Thus we have shown that

G gives the highest fundamental frequency among all membranes G of
given A, L, and % This fact leads to the upper bound

AR) < 2al-1y (3.4)
where 4 is the lowest root of the equation
Y (8 (RL Jo{r) — 2]y ()] = J1 () BLY o(40) — 2Y ()], (3.5)

If £ in problem (3.1) is a nonnegative function of arc length rather
than a constant, the inequality (3.4) still holds with AL in (3.5) replaced
by ¢, & ds.

IV. TorsioNAL RIGIDITY

Let G be a simply connected domain of area 4 bounded by the closed
curve C, of perimeter L. The torsional rigidity P of G is defined by

9, p. 87].
[2” vdx dy}
P = max - =

e (4.1)
jS lgrad v|?dx dy
G

among sufficiently regular functions ¢ which vanish on C,.
We define the variable » as in section 2 and let

V=

15| -

(rs2 — %) + 2 lcugrl . (4.2)
2
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Using the results of Section II leads immediately to the bound

Az

P>~ [1— 2931 — PH~1 — 4Pl — ¥)2log V] (4.3)
where ¥ is given by (1.4). An upper bound for P in terms of 4 is given
by the isoperimetric inequality

P A% 2 (4.4)

which was conjectured by St. Venant [10] and proved by Pélya [8].
Again we see that if G is nearly circular in the sense that ¥ is small,
its torsional rigidity is close to that of the circle of equal area.
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