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To Professor Mauro Picone on his ninetieth birthday.

R1ASSUNTO - Un sistema di m equazioni alle derivate parziali in m funzioni
incognite & detto « weakly coupled » se la h-esima equazione contiene solo le de-
rivate parziali della h-esima funzione incognita. Per sistemi semilineari siffatti,
di tipo parabolico e di tipo ellittico, vengono determinati insiemi m-dimensionali
S (detti insiemi invarianti) tali che se i dati stanno in S, le soluzioni si trovano
anche in S.

1. Introduction.

While a maximum principle for the heat equation was found by
E. E. Lev1 [8, 9], the systematic study of maximum principles for para-
bolic equations was inaugurated by Professor PicoNE [17,18]. The
strong maximum principle was discovered by L. NIRENBERG [14].

The maximum principle for Laplace’s equation is found in the
works of GAuss [6] and EArRNsHAW [4]. It was extended to general
elliptic equations in the work of PARAF [15], MouTarp [13], and
PicoNE [16]. The strong maximum principle is due to Hopr [7].

Two kinds of maximum principles are known for weakly coupled
parabolic systems of the form

U, 2 021, ou,

n
e 3 ol t — 3 b;(x, t o
dat i ]'2—’_-1 ¥R 0x; ow; ifl (w’ ) ox;

L1)  Llug] =

=3 A, )us a=1,2..,m.
p=1
and the corresponding elliptic systems.

(*) This work was supported by the U. S. National Science Foundation
through Grant GP 37660 X.
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The first kind of maximum principle states that if the off-diagonal
entries of the matrix A.s are non negative and if the initial and boun-
dary values of the components u, are nonpositive, then the solution u
also has nonpositive components. Moreover, if u (x) is a solution of the
corresponding elliptic system with the boundary values of the u, non-
positive, the components u, are nonpositive. Such results have been
found and applied to nonlinear problems by J. Szarski [24, 25, 26],
W. Mrak [12], J. ScHrOpER [21,22], P. BeEsara [1,2], and A.
McNasB [10].

A second kind of maximum principle for the system (1.1) applies
if the matrix A.; has the property that for any real m-vector &

2 Apbaép=<0.
a, f=1

In this case one finds that if the initial and boundary values of u sa-
tisfy the inequalities |u|<a for some constant @, then the same ine-
quality is satisfied by the solution. Such inequalities were found and
used for nonlinear elliptic systems by P. SzepTyck1 [27] and for linear
parabolic systems by T. Stys [23]. The result was extended by C.
MIRANDA [11] to certain linear systems in which the first partial deri-
vatives of the u, are also coupled.

The maximum principle for a single equation states that if the ini-
tial and boundary values of u lie in a certain interval S, the same is
true of the solution.

The theorems about the system (1.1) also say that if the initial
and boundary values lie in a certain set S, then the same is true of the
solution. In the first kind of maximum principle S is taken to be the
negative octant while in the second case S is the ball |u |<a. A spe-
cial case of a recent result of SATTINGER [20, Theorem 3.1] is of the
same form but with S a certain rectangle.

In this paper we shall show how to find a set S with the property
that if the initial and boundary values of a solution u of the weakly
coupled semilinear system

Ollg s

> o%u, it a
g o = g i o N e b‘_ t = fa t
(12)  Llue = ]z= L Z b, =fa(u, 3,0

ou

=12, o m

lie in S, then the values of u also lie in S. We call such a set S an
invariant set.
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Theorem 1 shows that under some regularity conditions a set S
which is convex and which has the property that f never points out-
ward on the boundary of S is an invariant set for the system (1.2).

For a scalar equation the set S is, of course an interval. The strong
maximum principle then states that if the value of the solution at an
interior point lies on the boundary of S, then all the values of the so-
lution lie on the boundary of S. In Theorem 2 we prove the analogous
theorem for our invariant sets.

In Section 3 we give the corresponding results for the weakly cou-
pled elliptic system which is obtained from (1.2) by making the coef-
ficients, the vector field f, and the solution independent of ¢.

In Section 4 we show that our theorems may be sharpened by in-
troducing additional dependent variables whose values are x and .

In Section 5 we present some examples to show that our suffi-
cient conditions for S to be invariant are in some sense also necessary.
We also give some examples to illustrate the application of our re-
sults.

It should be noted that while the first kind of maximum principle
also works when the operators on the left of (1.1) depend on a, our
results, like the second kind of maximum principle, do not extend to
this case. Our results also do not contain the above-mentioned genera-
lization of C. MIRANDA to elliptic systems with coupled derivatives.

I wish to thank my colleagues Lawrence Markus and George Sell
for helpful discussions.

2. Parabolic systems.

We beging with a simple lemma which contains the basic idea of
our results. -

We denote by D a domain in R" with closure D.

If S is a closed convex set in R™, we shall denote by S, (p>0)
the parallel set of all points in R™ whose euclidean distance to S is
at most p.

LEMMA 1. Let S be a closed convex subset of R™. Suppose that
. there is an €>0 such that for each pe(0,¢) the parallel set S, has
the property that if p is the outward normal at a point w* on the boun-
dary of S, , then

(2.1) p-f(u* 2t <0

for all (x,t) in DX (0, T].
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If u is any solution of the parabolic system (1.2) in DX (0,T]
land if all limit points of wu (x, t) as (x, t) approaches Dx{0} or dDX
X [0,T] and, if D is unbounded, as |x|—>co with (x,t)eDX (0,T]
lie in S, then u (x,t)eS in DX (0,T].

PROOF. Suppose that for some (x, )eDX (0, T], u(x, t) is outside
S. Then u (x,t) is also outside S, for some p€(0,¢). By continuity
there is a point (x*,#*)eDX (0, T] such that u (x,f)€S, for (x,¢) €
eDX (0,t*] and u*= u(x*, t*)€ 65,. Let p be the outward normal
to 8S, at u*. Then by hypothesis p-f (u*, «*,¢*) < 0.
On the other hand, since S, is convex, the function p-u (x, f) attains
its maximum value in DX (0, t*] at (x*, t*). Therefore at (x*, t*)

p-ou/ét =0, p-ow/dx;=0 for i=1,..,n

and the matrix p -9*u/dx; dx; is negative semidefinite. A standard ar-
gument shows that p - X a” 9w /dx; dx; is nonpositive. Thus it follows
from (1.2) that p-f(u*, x* ¢*)=0, which contradicts (2.1). We con-
clude that wu(x,?) cannot lie outside S for (x,#)eDX (0,T], which
proves the lemma.

If we make some smoothness assumptions about the system (1.2)
and the domain D, we can replace the conditions (2.1) on the bounda-
ries of a whole family of parallel sets by the weaker condition

(2.2) p-fu* e <0 for (89€D>(0,T]

on the boundary of S.
It can be seen from the work of EIDEL’'MAN [5, especially Theo-

rem 4.4] that if

(@) L is uniformly parabolic and its coefficients are uniformly
Holder continuous with Holder exponent greater then 1/2, and

(b) the boundary 9 D is of class C'”, ve (0,1) and the vector
field f is uniformly Holder continuous in x and ¢ and Lipschitz conti-
nuous in u for (x, )eDX (0, T], then for any bounded Holder conti-

nuous initial values u(x, 0) in D and boundary values u on d DX [0,T]
the system (1.2) has a unique bounded solution in DX (0, T1 which is

continuous in DX [0, T]1. Moreover, if D is unbounded, this solution is
the limit of the solutions uz of initial-boundary value problems on
DNBzX (0, T] with ug=u at t=0 and on d DNBrX (0, T] and with
any uniformly bounded smooth data given on DNJBrX (0,T]. Br
denotes the ball {x: | x |<R}.
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THEOREM 1. Let S be a closed convex subset of R™ with the pro-
Dperty that for any outward normal p at any boundary point w* of S the
inequality (2.2) is satisfied.

Let the operator L satisfy the above hypothesis (a), and let D and
f satisfy hypothesis (b).

If w (x, t) is any solution of (1.2) in DX (0, T] which is continuous
in D X [0,T], and if the values of w on DX{0}and on dD X [0,T]
are bounded and Holder continuous and lie in S, then u (x,)€eS in
D0, T].

Proor. For any point w of R™ which lies outside S there is a u-
nique point ¢ (W) on dS which is closest to w. Of course, W—q(W) is an
outward normal to 0 S at q(w). We define

f(w, x, t) if wes
g (W, t) =
flqw),z,t)—w4q(w) if we¢s.

The vector field g is Hélder continuous in x and ¢ and Lipschitz con-
tinuous inw. Assume first that D is bounded. By hypothesis there is a
unique solution w of the problem

Lw=g(W,z,t)in D><(0,T], wW(x,0)=u(x,0), w(x,z) |30 = 0@, 8|30,

It is easily seen that if w* is a boundary point of the parallel set
S,y then p=w*—¢(W¥) is an outward normal vector to 9 S, at u* and to
dS at ¢ (w*). Hence

P8 (W t) = (W — q (W¥)-£ (W, 2, t) — | W* — q (WY |2 << — o2

because of (2.2). Therefore the parallel sets of S satisfy (2.1) with
respect to the vector field g. Then Lemma 1 shows that w(x, £)€S in
DX (0,T].

If D is unbounded, w is the limit of solutions wz in DN Bz X (0,T],
where wg=1u on DNBzX{0} and on 3D NBzX [0, T]1, and wg on
DNABrX (0,T] is taken to be smooth and uniformly bounded and
to lie in S. By the above argument each wr lies in S. Since S is closed,
the limit w lies in S.

Since g (u,x, t)=f(u,x, ¢) for neS, wis a bounded solution of
the system (1.2) with the same initial and boundary data as u. A stan-
dard uniqueness theorem shows thatu=w. Hence u(x,f)€S in DX (0,T],
and the theorem is proved.
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Note that if f is independent of x and ¢, the condition (2.2) means
that the set S is invariant with respect to increasing ¢ under the flow
du/dt=1f(u). This system is obtained from (1.2) by deleting the terms
involving second partial derivatives.

This system is obtained from (1.2) by deleting the terms involving
second partial derivatives.

In order to formulate a strong maximum principle we shall need
the following definition.

DEFINITION. The boundary point w* of S is said to satisfy a slab
condition if there is a neighborhood N of w*in R™ with the following
property.

There is a C' one-to-one mapping M with C' inverse of NNS on-
to a set of the form

Y Bia Saaonis Tmedin P 5T 0 Tl X, 0 S0 TGV LE, tag) |
such that
(@) Mu*eKx{0},
(b) MueKX{O}:> ueds

(¢) The component o (n) of M is a C* function of u.
(d) The level surfaces o= constant are convex.

In the following theorem D is an arbitrary domain in R".

THEOREM 2. Let S be a closed convex subset of R™ such that every
boundary point of S satisfies a slab condition. Let f(u,x,t) be Lip-
schitz continuous in W, and suppose that if p is any outward normal
at a boundary point w*, then (2.2) holds for all (x,t)eD X (0, T].

Let L be locally uniformly parabolic, and let its coefficients be
locally bounded.

If u is any solution in DX (0, T] of the system (1.2) with u(x, )€ S
and if u(x*, t*)€d S for some (x*,t*)eDX (0, T1, then u(x,t)€d s in
D0, %]

ProoF. Let N be the neighborhood of u*=u (x*,¢*) in which the
mapping M is defined. By continuity there is a subdomain D; of D and a
t€(0, t*) such that u(x, f)eN for (x, {)eD: X (t, t*]. Denote by o(x, t)
the o-component o (u (x, f)) of M applied to u(x, f) in DiX(t, t*].
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We see from the chain rule and (1.2) that

2

do s "o 6 Oug Oug
wfmzt)— 2 2 a¥——m— —5
U, (1) fo (0, 2, 1) i, j=1 a, f=1 Olq OUg OX; OX; §

0

as) si=3

where u is, of course, to be evaluated at (x, ?).
Since the mapping M gives the 7, as functions of u, we may
write
7, (0, 1) = 7, (0 (, t)).

The inverse mapping M~! allows us to write u as a function of
Tiies s, Tmo-and o, “TheR

g '"2-:‘ 0Uq 0Ty +

U, 0@
;= 01, 0%

00 (')m,- ¢

Because the surfaces o= constant are convex, the matrix

m 0%  Ou, oug

2.4
i a, f=1 OUq OUg 0T, 0T,

is negative semidefinite. Hence

@ g mz—l o 0% U, oug 07, 8'[,uS 0
ij=t ap=1 vu=1 OlaOUp 0T, 07, 0%; OX; :

We then see from (2.3) that

wae n m k> '0\20 m—1 6":1 81, E)ua 8(]7

o L5 ij e Pl pbA
@5 Dlgl=Ligl+ = 2 algmris 2 o ont ot o
,auﬁ 3_(1)22 do () fo(u,,t)= F (u, 2, ).

90 ow; JUq

We again consider u as a function of = and ¢ which, in turn, are
functions of x and ¢#. We define the function

Fu(z(x,1),0),t) -+

Ho, 2, t)={ +<;o(w,t)

[F (u(z(x,t), @ (2,t), 2, t) — F(u(z(x,1t),0),x, 1)
for 0 <o <o (x,t)

 F(u(r (2 0), ¢ (2,1), x, 1) for 0 = ¢ (x, t).
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Then (2.5) shows that ¢ satisfies the uniformly parabolic differential
inequality ‘

(2.6) L{g)=H (7, 2,1
in Dy X (1, t*].

Since the points where =0 lie on the boundary of S and since
do/du, is an inward normal at such a point, it follows from (2.2) that

do

H(O,a,t)=23 81(5“) falyz, )= 0.

Thus (2.6) implies that

(2.7) Lp)=H (g, x,t) — H (0, x,1).

Moreover, =0 in D; X (t, t*] and @ (x*, t*)=0.

By construction H (o, x, t) is Lipschitz continuous in o¢. Since ¢ is
bounded in any closed subset Dy X [t, t*] of DiX(t, t*], there is a
constant ¢ so that |H (p (x,t),x, ) —H@O,x,t)| <c|o 0| for
(x, )€Dy X [t t]. Hence if we define

q (@, t)=e""p(x,1)

—et H(p (2, t), 2, t) —H (0, 2. 1)
. -y
i (w! t) = " (.’L‘, t)
9 if <P(w,t)=0,

if @@t)==0

we see that p<0 and ¢=0. Hence, fquq—uqzo, q=0 in DX
X [t, t*1, and g (x*, t*)=0. It follows from the strong maximum prin-
ciple (see, e. g. [19, Theorem 2.5]) that g=0 and hence that p=0 in
D> X [ti, t*]. Since D)X [t, t*] is an arbitrary closed subcylinder of
Dy X (1, t*], =0 in D;X (t, t*]. This means that u (x, f)€dS in this
set,

The above argument shows that the set {(x, )eD X (0, t*]:u(x,t)e
€0S} is relatively open in D X (0, ¢*]. By continuity, this set is also rel-
atively closed. We conclude that u (x, #)€dS in all of DX(0,t*].

REMARKS.

1. The slab condition is certainly satisfied at each boundary point
if the boundary 9S is of class C% It is also satisfied if S is the intersec-
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tion of finitely many convex sets with C2 boundaries, provided the
boundaries intersect at nonzero angles.

2. If u* lies on the intersection of several C2 boundary compo-
nents which meet at nonzero angles, the proof of Theorem 2 applied
to each piece separately shows that if w(x*, f*y=u*, then u (x, t) lies
on the intersection of these components in D X (0, t*]. Thus if we think
of dS as a curvilinear polyhedron, u is confined to one of the faces,
edges, or vertices of S.

3. If the Gaussian curvature of dS is never zero, then the matrix
(2.4) is negative definite. Since p=0, the inequality in (2.7) cannot be
strict. Therefore d7, /9x;=0 for all v and i at any point (x*, t*) where
u(x*, t*)€dsS. Since also dp/dx;i=0 at such a point, we conclude that
in this case a solution u (x,.#) which lies on 9S must be independent
of x.

4. The above proof is easily extended to show that if (1.2) holds
in an arbitrary domain R of the (x, ?) space, if v (x, )€S in R, and if
u (x*, t*)€aS, then u(x, £)€dS at all points which can be reached from
(x*, t*) by a path in R along which ¢ never increases.

3. Elliptic systems.

If the c'oefﬁcients and the function f in (1.2) are independent of
t, we may consider the corresponding uniformly elliptic system

(LB 0%u, e Ju,
b 1 o | = — Y —_— b;
(3.1) Mu,] i,j2=1 av (x) P 151 () e

= fa(U,2) a=1,...,m.

By using essentially the arguments that were used to prove Theo-
rem 1, one establishes the following theorem about a solution u of (3.1)
in a domain D.

THEOREM 3. Let S be a closed convex subset of R™ with the prop-
erty that if p is any outward normal to dS at a boundary point u*,

then
p-f(uw )<< 0 for xze€D.

Suppose that any boundary value problem for equation (3.1) with
boundary values in S has at most one solution, and that such a boun-
dary value problem with T replaced by the vector field & defined in the
proof of Theorem 1 has at least one solution.
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Let w be a solution of the system (3.1), and let its boundary va-
lues lie in S. Then u (x)€S for all x in D.

Since a solution of (3.1) is also a solution of the corresponding par-
abolic system (1.1), Theorem 2 yields the following result.

THEOREM 4. Let S be a closed convex subset of R™, and let every
point of the boundary satisfy a slab condition. Let f(u, x) be Lipschitz
continuous in u, and suppose that any outward normal p at any bounda-
ry point w* of S satisfies the inequality p-f(u*, x)<O0 for all x in D.

If u(x, t) is a solution of the elliptic system (3.1), if u (x, )€S,
in D, and if n(x*, t*)€0S for some point (x*, t*)€D, then u(x, t)€dS
for all (x, t)eD.

The first three remarks after Theorem 2 apply here. In particular
Remark 3 states that if u lies on a face of dS whose Gaussian curvature
does not vanish, the u is constant.

4. Finer invariant sets.

If the vector field f (u,x,¢) is independent of x and ¢, we can
easily describe the invariant sets S. They are those closed convex sets
which are invariant with respect to increasing ¢ under the flow du/dt =
={f(u). This is the system of equations which one obtains by eliminating
the second order terms from the system (1.2).

We can always reduce the system (1.2) to a system in which f
depends only on the dependent variable u by introducing the new var-
iables Um.1, .. » Umin, Umins1 in such a way that umyi=x; for i=1,...,n
and Umins1=t. We simply append the additional equations

(4.1) Lfu)=—0bs—m for a =m +1,...,m +n, Ltpipy]=1

with the proper initial and boundary values. We let n be the new
m+n+ 1-dimensional vector of unknowns and write the combination
of the systems (1.2) and (4.1) as

(4.2) Lu] = f(u).
Theorem 1 applied to this new system now gives invariant sets
S in R™+1 Since we know that (x, {) remains in DX (0, T], we only

need to define S as a subset of R™XDX(0,T]. The only boundary
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points of interest are those of the relative boundary in R”x DX (0, T].
The proof of Theorem 1 gives the following extension.

THEOREM 5. Let the domain D, and the operator L satisfy the
hypotheses of Theorem 1. Let b, (X, 0), .., bu(x, 1) and f(u,x,{) be
Lipschitz continuous in all their varigbles.

Let S be a relatively closed subset of R™x D X (0, T]. Suppose that
each point n* of the relative boundary B of S in R"XDX(0,T] has
a neighborhood whose intersection with S is convex and that any out-

ward normal f) at u* satisfies the inequality
(4.3) p-fa% < o.

If ﬁis a solution in DX (0, T of (4.2) whose initial and boundary

values lie in .§, then fleg in"DX (0P].
We remark that if SCR™ satisfies the conditions of Theorem 1,

then the set S =SXDX(0,T] satisfies the conditions of Theorem 5.

The set $N R™X{(x, #)} in which u(x, ) may lie may depend upon
the point (x, #). Therefore Theorem 5 may give more information than
Theorem 1 even if the vector field f is independent of x and ¢

The reduction to the system (4.2) can also be used to extend the
other theorems, but we shall not do so here.

We note that by (4.3) a subset S of R"XDX(0,T] is an inva-
riant set for (4.2) if it is locally convex on its relative boundary and
invariant with respect to increasing time under the flow

(4.4) du/dt =f(u,2,t); dr/dt = — b;(w,1), i= 1585, o

These are the equations which can be used to solve the system
which is obtained from (4.2) by discarding the second derivative terms
of L (that is, the diffusion terms).

5. Examples and counterexamples.

In this section we shall give some examples to illustrate the impli-
cations of our results.

The requirement of convexity makes it difficult to find invariant
sets S. The first example shows that the convexity is needed.
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EXAMPLE 1. Let m=2, n=1, and consider the following problem

3 2 3 52
(5.1) ou, o~u, Uy 0%y

ot Qs t x?

Q=" forca= 0

———

U (#,0) =uy(—,0)=1!2 for 0 <a<l

'\1 for w=1.

Since £=0, the condition p-f <0 is satisfied for any set S. The initial
values lie on the union of the two line segments u;=0, u,€[0, 1] and
u3=0, w€[0,1]. By the maximum principle u; (x, #)€(0,1), u; (x, e
€(0,1), and w (x, £)+u> (x, ) €(0,1). Moreover, for each ¢

lim w(rt)= lim wyrt)=1 and lim wfet)= lim wle,t)=0.

Z —» oo X »—o00 Z —-—o00 T — == 00

Finally, since 1—u (x,0)—u: (x,0) is bounded and has bounded sup-
port, the explicit solution of the heat equation shows that 1 —u; (x, ) —
—u (x, t)<ct~1?. Thus, the solution comes arbitrarily close to the
line wi+us=1. It follows from continuity that the range of w(x,¢) in
RXR, is just the triangle u;>0, u,>0, wi+u<1, whose closure is
the convex hull of the set of initial values. Thus the smallest closed in-
variant set S is this convex hull.

We remark that in this particular problem, the smallest relatively

closed invariant set S given by Theorem 5 is just SXR'X (0, T].
The following example shows that under the conditions of Theo-
rem 2 u need not be constant.

ExamPLE 2. The disc S={u:|u[?<1} satisfies the conditions of
Theorem 2 with respect to the system

ou, 5w, : ouy  J’wy

e SRS RY F I

This system has the noncostant solution wu;= sint, wu;= cost, which
lies on dS for all ¢.

We shall now give an example to illustrate the fact that the non-
zero Gauss curvature is needed in Remark 3 after Theorem 2.
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ExAMPLE 3. The cylinder S={u:ul’+u?=1, w€e[—1,11} sati-
sfies the conditions of Theorem 2 with respect to the system

ou, 9%, ou,  6%u, oug  0%u,
2 = —u,, T e
ot ox

¥ Ipma

The Gaussian curvature vanishes on the side as well as on the top and
bottom of this cylinder. A solution on 9S is given by uy=sin ¢, u;=cos ¢,
and us (x, t) any solution of the heat equation with values in (—1, 1).
Thus u need not be independent of x.

We shall now give some examples of invariant sets S in the case
when f(u, z, t)= Au, where A is a constant mXm matrix. We recall
that a closed convex set S is an invariant set if and only if it is inva-
riant with respect to increasing ¢ under the flow.

(5.2) du/dt = Au.

Thus, if S contains an initial point of a trajectory of (5.2), it must con-
tain all points of the trajectory with #>0.

It is known [3, § 56, Theo. 2] that the flow (5.2) has bounded
invariant sets with interior if and only if all the eigenvalues of A have
nonnegative real parts and no nonlinear elementary divisors cor-
respond to any eigenvalue with real part zero. Let S be the matrix
such that S~ AS is the Jordan canonical form but with the usual ones
above the diagonal of each Jordan block replaced by the real part of
the corresponding eigenvalue. It is easily verified that the positive
definite matrix R=Re $*~' S~! has the property that u-RAu<0 for all
u. Therefore u-RAu is a Lyapounov function for (5.2). Moreover, it
follows that if L [u] =An, then L [u-Ru] <0.

The ellipsoids u-Ru=<a? are therefore invariant sets S.

If the b; are all zero, Theorem 5 shows that if ¢ (x) is any concave

function, the set S’:{(u, x,t):u-Ru<¢ (x)%, (x,)eDX(0,T]} is an
invariant set in R™™"*!, Thus if u (x, 0)-Ru (x, 0)<¢ (x)* on Dx{0}
and on dDX [0, T], then u -Ru<¢ (x)? in DX (0, T].

One may prefer to use sets S other than ellipsoids. For example,

=10 —1
Ay o 1)

if

any rectangle of the form |ui|<a, [u/<104 is an invariant set. Moreo-
ver, if the b; are all zero and if ¢ (x) is any concave function of x, the
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set S=R™XDX(0,T] N{u,x, 1): [ms|<¢ (x), |u2] <10¢(x)}is invariant.

Even if there are no bounded invariant sets with interior, one can
frequently find unbounded invariant sets, and these can also be useful.
For instance, if m=2 and

the origin is a saddle point for the flow (5.2). It is easily seen that any
strip s 2 a, b < u; <c with a >0, b <0 and ¢ = 0, and any strip
u=<a, b=u,<c with a<0, b<0 and ¢=0 is invariant.

In fact, one can always find such invariant sets when m=2 except
in the case when A has complex eigenvalues with positive real part.
In this case the origin is an unstable spiral point with respect to the
flow (5.2), and hence the convex hull of any trajectory is the whole
plane. Thus, the only invariant sets in this case are the origin and the
whole plane.
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