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To Prolessor Mauro Picone on his ninetieth birthday,

Rr.lssurro - Un sistema.di m equazioni alle derivate parziali in m lunzioni
incognite d detto < weakly coupted > se la h-esima equazione contiene solo le de-
rivate parziali della h-esima lunzione incognita. Per sistemi semilineari sifiatti,
di tipo,parabolico e di tipo ellittico, vengono determinati insiemi m4imensiotuli
S (detti insiemi invarianti) tali che se i dati stanno in S, le soluzioni si troyano
'anche in S.

1. fntreduction.

While a maximum principle for the heat equation was found by
E. E. Lnvr [8, 9], the systematic study of maximum principles for para-
bolic equations was inaugurated by Professor Prcor.rB [17, 18]. The
strong maximum principle was discovered by L. NrnnnBERc tf4].

The maximum principle for Laplace's equation is found in the
naorks of Gluss [6I, and Eanxsnew [4]. It was extended to general
elliptic eguations in the work of Pen^lr [15], Mourano [lj], and
PrcoNB t161. The strong maximum principle is due to Hopr. t7l.

Two kinds of maximum principles are known for weakly coupled
parabolic systems of the form.

(1.1) Llu,l 
- * -, 

|raii 
(a, tt 

#",-,i 
bi(a, q#

:  g a"p(rr t )up q,- l r2r , , . rm.
F:l

and the corresponding elliptic systems.

(!) This work was $pported by the U. S. National Sciencc Foundation
through Grant GP 57660 X,
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The first kind of maximum principle states that if the off-diagonal
entries of the matrix A..B ata non negative and if the initial and boun-
dary values of the components ua ate nonpositive, then the solution u
also has nonpositive components. Moreover, if u (x) is a solution of the
corresponding elliptic system with the boundary values of the u" non-
positive, the components u{, ate nonpositive. Such results have been
found and applied to nonlinear problems by I.Szensrt 124,25,26f ,
W. Mrer ll2l , | . Scnnonrn 121,221, P. BBseLa ll,2l, and A.

McNess t101.
A second kind of maximum principle for the system (1.1) applies

if the matrix A"p has the property that for any rcal m-vector f

' ;  a"pl 'oEp<0.
a, f : l

In this case one finds that if the initial and boundary values of u sa-

tisfy the inequalities I o l=o for some constant a, Ihen the same ine-
quality is satisfied by the solution. Such inequalities were found and
used for nonlinear elliptic systems by P. Szeprvcrt l27l and for linear
parabolic systems by T. Srys t231. The result was extended by C.

MrneNoe tlll to certain linear systems in which the first partial deri-

vatives of the u" are also couPled.
The maximum principle for a single equation states that if the ini'

tial and boundary values of u lie in a certain interval S, the same is

true of the solution.
The theorems about the system (1.1) also say that if the initial

and boundary values lie in a certain set S, then the same is true of the

solution. In the first kind of maximum principle S is taken to be the

negative octant while in the second case S is the ball lo l=o. A spe'

cial case of a recent result of SerrlNcBn [20, Theorem 3.1] is of the

same form but with S a certain rectangle.
In this paper we shall show how to find a set S with the property

that if the initial and boundary values of a solution u of the weakly

coupled semilinear system

(1.2) L lu,l: * -o,f:ro" *,r) -#i;,- 
,|b;(n, 

t)# :.f o(u, r, r)

A :  l r  2,  . . .  ,  nt ' .

lie in S, then the values of u also lie in S. We call such a set S an

invariant set.

tzl
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Theorem I shows that under some regularity conditions a set S
which is convex and which has the property that t never points out-
ward on the boundary of s is an invariant set for the system (1.2),

For a scalar equation the set S is, of course an interval. The strong
maximum principle then states that if the value of the solution at an
interior point lies on the boundary of S, then all the values of the so-
lution lie on the boundary of s. In Theorem 2 we prove the analogous
theorem for our invariant sets.

In Section 3 we give the corresponding results for the weakly cou-
pled elliptic system which is obtained from (1.2) by making the coef-
ficients, the vector field f, and the sorution independent of t.

In section 4 we show that our theorems may be sharpened by in-
troducing additional dependent variables whose values are x and t.

In Section 5 we present some examples to show that our suffi-
cient conditions for S to be invariant are in some sense also necessary.
We also give some examples to illustrate the application of our re-
sults.

It should be noted that while the first kind of maximum principle
also works when the operators on the left of (l.l) depend on s, our
results, like the second kind of maximum principle, do not extend to
this case. Our results also do not contain the above-mentioned genera-
lization of C. MInaNoe to elliptic systems with coupled derivatives.

I wish to thank my colleagues Lawrence Markus and George Sell
for helpful discussions.

9. Parnbolie systemr.

We beging with a simple lemma which contains the basic idea of
our results.

We denote by D a domain in R" with closure D.
If S is a closed convex set in R-, we shall denote by So k>0)

the parallel set of all points in R' whose euclidean distance to S is
at most p,

Lnunae l. Let s be a closed convex subset of R*. suppose that
there is an e)0 such that for each pe(O,e) the parallel set Sn has
.the property that if yr fs the outward normal at a point rr* on the boun-
'dary ol Sn , then

(2.1) p. f  (u*,  n, t )  1O

lor all (x, t) in D X (0, fl.
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If n is any solution of the parabolic system (1.2) in D X (0, TI

wnil i! alt timit points o! n(x,t) as (x,t) approachrt DxtO) or 0DX

X [0,T] and, il D is unbounded, as lxl+"" with (x,t)eDX (0'?l

lie in S, then u (x, /) eS in PX (0, Tl.

Pnoor'. Suppose that for some (x,t)eDX (0, ?1, u(x, f) is outside
S. Then u (x, /) is also outside So for some p€(0,€). By continuity

there is a point (xo,t*)eDX(0, f l  such that u (x, r)eS, for (x,t) e
eDX (0, t*l and u*- tt (x*, /*)e 6Sn . Let p be the outward normal

to OSn at u*. Then by hypothesis p'f (u*, **,t*) < 0 '
On the other hand, since ̂ S, is convex, the function p'tr (x, /) attains

its maximum value in DX(0, /"1 at (x*, f*). Therefore at (x*,t*)

p.Enl3t2 0,  D'6uf \n, i :  O for i :  \ , . , . ,n '

and the matrix p.O2a/\xiilxi is negative semidefinite. A standard ar-

gument shows that p .Z aii02u/0xi0xi is nonpositive. Thus it follows

from (1.2) that p.f  (uo,xo,fo)>0, which contradicts (2.1). We con-

clude that u(Af) cannot lie outside S for (x,t)eDX (0,?1, which

proves the lemma.
If we make some smoothness assumptions about the system (1.2)

and the domain Do we can replace the conditions (2.1) on the bounda-

ries of a whole family of parallel sets by the weaker condition

(2.2) p . f  (u*, u, t)  1Q for (n, f i  e D x (0 
'  

?l

on the boundary of S.
It can be seen from the work of EIoBL'MAN [5, especially Theo-

rcm 4.4f that if

Holder

field f
nuous

(a\ t is uniformly parabolic and its coefficients are uniformly

continuous with Holder exponent greater then l/2, and

(b) the boundary 0D is of class Ct", ve (0,1) and the vector

is uniformly Holder continuous in x and t and Lipschitz conti'

in u for (x, t)eDX (0, Tl, then for any bounded Holder conti-

nuous initial values u (x, 0) in D and boundary values tr on 0 D X [0'?]

the system (1.2) has a unique bounded solution in DX (0, ?l which is

continuous in D x [0, T]. Moreover, if D is unbounded, this solution is

the limit of the solutions up of initial-boundary value problems on

DfiBnX (0,?l with rrp=11 at t :0 and on 0 DfiBnX (0,f1 and with

any uniformly bounded smooth data given on D n a BnX (0, fl ' Bn

denotes the bal l  {"t  lx l<R}.

t4l
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Tsronpu 1. Let s be a crosed convex subset ol R^ with the pro-
,perty tlnt for any outward normal p at any boundary point n* s1 s the
ineqwlity (2.2) is satisfied.

Let the operator L satisfy the above hypothesis (a), and la D and
f satisfy hypothesis (b).

If tr(x,t) is any solution of $.2) in Dx(O, Tl which is continuous
in D x [0, Tf , and if the values ol , on Dx { ol and on oDx [O,TJ
are bounded and Hiilder continuous and lie in s, then u (a t)es in
Dx (0, r l.

Pnoor. For any point w of R- which lies outside s there is a u-
nique point q(w) on 0S which is closest to w. Of course, w-q(w) is an
outward normal to 0 S at q(w). We define

The vector field g is Hcilder continuous in x and t and Lipschitz con-
tinuous in w. Assume first that D is bounded. By hypothesis there is a
unique solution w of the problem

Lw:g(w,o, t )  in DX(0, T),  w (o,0):u(r ,0) ,  w(u, t ) lao:  u(o, t )  l3r .

It is easily ,r.n thut if w* is a boundary point of the parallel set
Sn, then p:wr-tl(w*) is an outward normal vector to 0 Sn at n* and to
0 S at q (w*). Hence

p.g (w*, u, t) : (w* - q (w*)).f (w', nrt) - | ** -- q (w*) lu S - p,

because of (2,2). Therefore the parallel sets of s satisfy (2.1) with
respect to the vector field g. Then Lemma 1 shows that w (x, t)eS in
px (0, rl.

If D is unbounded, w is the limit of solutions wn in DflBnX(O,?1,
wherer i l *=uon Df lB*X{O} and on ADnBnX[0,f ] ,  and waon
DnA tsnX (0, rl is taken to be smooth and uniformly bounded and
to lie in S. 'By the above argument each wn lies in S. Since S is closed,
the limit w lies in S.

Since g(u, x,t)-f(u,r,f) for ueS,w is a bounded solution of
the system (1.21 with the same initial and boundary data asu. A stan-
dard uniqueness theorem shows thatu-w. Hence u(At)eS in DX(0,T1,
and the theorem is proved.

( f (w,o,  l ;  i f  w€,S
g (wr ort) :  I

(  f (q(w),o,  r ) -w * q (w) i f  w( S.
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Note that if f is independent of x and t, the condition (2.2) means
that the set S is invariant with respect to increasing / under the flow
daldt= f (u).This system is obtained from (1.2) by deleting the terms
involving second partial derivatives.

This system is obtained from (1.2) by deleting the terms involving
second partial derivatives.

In order to formulate a strong maximum principle we shall need
the following definition.

Den'rnttrov. The boundary point u* of S is said to satisly a slab
eondition if there is a neighborhood N of an in R^ with the lollauting
property.

t6I

There is a Cr one-to-one mapping M
to a set ol the torm

I  z1 t  tz r , , . ,  xz,-L,  a :  ( t ,  t , , .  t  t rm-L\ E K,

such that

(a) Mu*eKx{0},

(b) M n eKX{O} -> ue0S

with Ct inverse of N i S on-

0(o<p(. t r t . , , rz-- t ) t

(c) The componenl o(u) of M is a C2 lunction ol rt.

(d) The level surlaces o- constant are convex.

In the following theorem D is an arbitrary domain in R".

TunonBpr 2. Let S be a closed convex subset ol R^ such that every
boundary point ol S satisfies a slab cond'ition. Let f (u, x, /) be Lip
schitz continuous in u, and suppose that if p is any outward normal
at a boundary point tr*, then (2.2) holds tor all (x, t) eDX(0, Tl.

Let L be locally unilormly parabolic, and let irs coefficients be
locally bounded.

ff u rs any solution in DX(0, Tl ol the system (1.2) with a(a t)e S
and i f  r (x*, t*)e0 S lor  some (x*, t*)eDX(0,T],  then u(x, t )e lS in
Dx(0,t*1.

Pnoor'. Let N be the neighborhood of u*=u (x*,/*) in which the
mapping M is defined. By continuity there is a subdomain Dr of. D and a
/r€(0,/*) such that u (x,t)eN for (x,t)eDrX (h,t*7. Denote by p(x,t)

the o-component o (u (x, t)) of M applied to u (x,t) in DrX(fi, f*1.
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We see from the chain rule and (1.2) that ..

(2.3) Llvl: 2,ffOln(u, o,,) -,, S*, 
",f:,o', #,

: . j

where tt is, of course, to be evaluated at (x, t).
Since the mapping M gives the r p as functions of

write
tp (0t t) 

- 
q (u (rr l))'

The inverse mapping M-r allows us to write ll as a
Tb ,,, t Tm-r and a. Then

6uo *it duo 0t" , 6uo 6E

0*r:  "1,  
i , r ,  a.rT ao a*o'

Because the surfaces d= constant are convex, the matrix

(2.4) g -,-*- a:'" aY|
a, f:L ltco 6up 0h }rn

301

6ttn }up

ar.6 a"r '

u, we may

function of

is negative semidefinite. Hence

n m m-t 32a
Z Z 2 ai j -

i, !-l a, d:l r, F-L }Uu EttP

6Uo }un 0t ,%-o.
6 i , r t  ar,  - '6t"

We then see from (2.3) that

(z.b) fr tel - Ltql * 0,3*, ",f:,o,t #J, :' # #,+ * #,\.

'Y #,=z #(u)'f" (n' o' t\ :  E(u' c' t) '

We again consider lt as a function of r and a which, in turn, are
functions of x and f. We define the function

/  r to k @, r) ,0 ) ,  0, t )  *
t - .
I
I + _L [.E' (u (t (u, t), I lat t\\ o, t) - I (rr (z (r, ,), 0 ), n, t\l

Eb,r. t ) - \  9 luta)
I  for  O(o<g\n, t )
I
I
\ f (n F @rt), V @, t)), a, t) for o 2 P (o, t).
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Then (2.5) shows that g satisfies the uniformly parabolic differential
inequality

(2.6) L l2l> E (s', n, t)

in Dr X(h, t*f  .
Since the points where o:0 lie on the boundary of S and since

0o/0u" is an inward normal at such a point, it follows from (2.2) that

.a(or u,t) --t u:^1") 
"f" (u, n,t\ / o.

Thus (2.6) implies that

(2.7) frfvl> E (V, r, t) - E (0 , o, t).

Moreover, cp>O in DrX(fi, t*l and g (x*, t*);=9.
By construction H (o, A /) is Lipschitz continuous in o. Since g is

bounded in any closed subset DzX ltz, t*f of Dr X(tr, t*7, there is a
constant c so that I H <rp (x, t), x, t) - I/ (0, x, t) | S 

" I cp (x, t) | for
(x,t)eDzXltz,tf. Hence if we define

q (q t) : e-ctg @, t)

n@@,t\ ,n, t \ -E(0,n. t )
and

\ ,-,'lp(n,t )  -  
lo 

L
1- r l  i f  v@,r)  +0

i f  9@,t) :0r

p (n, t)

we see that pSO and q>-0. Hence, iq-iq-pq=-}, q>O in DzX

Xltz,f*1, and q(x*,/*):0. It follows from the strong maximum prin-
ciple (see, e. g. [19, Theorcm2.5]) that Q=0 and hence that g=0 in

DzX ltr, t*f. Since DzX ltz, t*7 is an arbitrary closed subcylinder of
DrX(h,t*1, g=O in DrX (fr, /*1. This means that u (x,t)e0S in this
set.

The above argument shows that the set { (x,t)eDX(0, t*]:u(x,f)e
e 0S) is relatively open in DX(0,t*l.By continuity, this set is also rel-
atively closed. We conclude that u (r,0e0S in all of DX(0,t*1.

Rnuams.

1. The slab condition is certainly satisfied at each boundary point

if the boundary 0S is of class C2. lt is also satisfied if S is the intersec-
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tion of finitely many convex sets with C2
boundaries intersect at nonzero angles.

boundaries, provided the

2. If u * lies on the intersection of several c boundary compo-
nents which rneet at nonzero angles, the proof of Theorem 2 applied
to each piece separately shows that if tr(x*,/*):u*, then rr(Ar) lies
on the,intersection of these components in Dx(g, f*1. Thus if we think
of 0s as a curvilinear polyhedron, u is confined to one of the faces,
edges, or vertices of S.

3. If the Gaussian curvature of 0S is never zero, then the matrix
(2.4) is negative definite. Since g=0, the inequality in (2.7) cannot be
strict. Therefore 0r, f 0xi-0 for all v and i at any point (x*, f*) where
tr(x*,r*)e0s. since also 0g/0xi=0 at such a point, we conclude that
in this case a solution u (a.t) which lies on 0S must be independent
of. x.

4. The above proof is easily extended to show that if (1.2,) holds
in an arbitrary domain R of the (a /) space, if u (a t)es in R, and if
u (x*, r*)eOs, then u (x, t)eOs at all points which can be reached from
(x*, fn) by a path in R along which f never increases.

3. 'El l lpt le systems.

If the coefficients and the function f in (1 .z) are independent of
f, we may consider the corresponding uniformly elliptic system

(B.t )  M[u,J-  -  ;  av @)3+ -  ;  b,@)*" r , - -  . \
d, j- l  '  da1 dfr i  o: l  oi :J-o(uro) 

d' : l ' " , f i i '

By using essentially the arguments tfat were used to prove Theo
rem 1, one establishes the following theorem about a solution u of (i.1)
in a domain D.

' T""o*nu 3. Let s be a closed convex subset of R^ with the prop-
erty that if p is any outward normal to 0S at a boundary point a*,
tlpn

p.f( t t r , r )  <0 for uED.

Suppose that any boundary value problem for equation (3.1) with
boundary values in S has at most one solution, and that such a boun-
dary value problem with f replaced by the vector field s defined in the
pr@l al Thearem I has at least one solution.
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Let t be a solution of the system (i.1), and let its boundary va-
Iues lie in S. Then u (x) eS for all x in D.

Since a solution of (3.1) is also a solution of the corresponding par-
abolic system (1.1), Theorem 2 yields the following result.

Tseonena 4. Let s be a closed convex subset of R^, and let every
point of the boundary satisly a slab condition. Let f (rr,x) be Lipschitz
continuous in v, and suppose that any outward normal p at any bounda-
ry point u* ol s satisfies the inequality p.f (u*,x)<0 for all x in D.

If  n(x,t) is a solut ion of the el l ipt ic system (i .1), i l  n(x,t)eS,
in D, and i f  u(x*,r*)e0S for some point (x*,t*)eD, then u(ar)e0S
tor aII (x, t)eD.

The first three remarks after Theorem 2 apply here. In particular
Remark 3 states that if rr lies on a face of 0S whose Gaussian curvature
does not vanish, the u is constant.

4. Firrer invarinnt sets.

If the vector field f (u, x, /) is independent of x and f, we can
easily describe the invariant sets S. They are those closed convex sets
which are invariant with respect to increasing / under the flow rtuf dt -
:f(u).This is the system of equations which one obtains by eliminating
the second order terms from the system (1.2).

We can always reduce the system (1.2) to a system in which f
depends only on the dependent variable rr by introducing the new var-
iables l lm+r,, . . ,1)*+n, Llm+n+r in such a way that um+i:x; for i :1,. , . ,n
and u*+n+r:t. We simply append the additional equations

(4.1) I ' lu" l :  -  bo-^ for a :  rn * 1, , . .  tol  * n, Lfn,,narnrrr]  :  1

with the proper initial and boundary values. We let u be the new
m*n* l-dimensional vector of unknowns and write the combination
of the systems (1.2) and (4.1) as

, t ' i l  : i t i l .

t10l

({ .2)

Theorem I applied to this new system now gives invariant sets

,3 in R-*n+'. since we know that (a /) remains in Dx(0, T1, we only

need to define,f u, u subset of R-xDx(O,f]. The only boundary
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points of interest are those of the relative boundary in R'xDx(0,r1.
The proof of Theorem I gives the foilowing extension.

TsBonru 5. Let the domain D, and the operator
hypotheses of Theorem l. Let h (x, t), ... , bn (x, t) and
Lipschitz continuous in all their variables.

Let S be a relatively closed subset of R*XDX(O,TJ . Suppose that
each point,i* ,l the relative boundary i ol ^i in R*XDX(g,T1 has
a neighborhood whose intersection with 3 i, ,on ex and that any out-
ward normat ] ot i* satisfies the inequality

p.f  (u*)  < 0.

L satisly the
f (t, x, t) be

(4.3)

ff u rs a solution in Dx (0, Tl ol (4.2) whose initial and boundary
values tie in 3, then i .,3 in Dx (0, Tl.

We remark that if ScR- satisfies the conditions of Theorem !,
then the set S=sxDx(O,r1 satisfies the conditions of Theorem 5.

The set $nn-x{(a r)} in which u(x, r) may lie may depend upon
the point (x, t). Therefore Theorem 5 may give more information than
Theorem 1 even if the vector field f is independent of x and t.

The reduction to the system (4.2) can also be used to extend the
other theorems, but we shall not do so here.

we note that by (4.s) a subset ,3 of R,xpx(O, T] is an inva-
riant set for (4.2) if it is locally convex on its relative boundary and
invariant wifh respect to increasing time under the flow

(4.4) iht ldt :  f  (ur  o, t ) i  d, t6 l i l t :  -  b;(c, t ) ,  d -  1r . . . ,n.

These are the equations which can be used to solve the system
which is obtained from (4.2) by discarding the second derivative rerms
of. L (that is, the difrusion terms).

6. Exnmples and eounterexnmples.

In this section we shall give some examples to illustrate the impli-
cations of our results.

The requirement of convexity makes it difficult to find invariant
sets s. The first example shows that the convexity is needed.
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Exanapre l. Let m:2, n:!, and consider the following problem

tt2l

(5.1) +-#:0,  #-#--o

t t ' r ( f r t0)  :  r t2(-n,O):

0 for n30

n for 0 (r( ,  1

1 for  u 2l ,

since f:0, the condition p.f <0 is satisfied for any set s. The initial
values lie on the union of the two line segments ur:O, uze]O,lf and
ttA=O, uaelo,17. By the maximum principle ur(x, /)€(0,1), uz(x,t)e
e(0,1),  and ur(x, t )+u2(x, t )e(0,1).  Moreover,  for  each t

,h 
, ,(",r):  

n11." 
t l r( t : , t)-  I  and 

"t j i  *ur(r, t) : , I :  *, t i r(u,t):o,

Finally, since l-ur(x,0)-uz(x,O) is bounded and has bounded sup-
port, the explicit solution of the heat equation shows that l-ur@,t)-
-uz(x,t)<ct-t\2. Thus, the solution comes arbitrarily close to the
line ur*uz= 1. It follows from continuity that the range of rr (x, t) in
RxR+ is just the triangle urlo, uz)O, h*uz(l, whose closure is
the convex hull of the set of initial values. Thus the smallest closed in-
variant set S is this convex hull.

We remark that in this particular problem, the smallest relatively

closed invariant set s given by Theorem 5 is just sxRrx(O,T1.
The following example shows that under the conditions of Theo-

rem 2 u need not be constant.

ExenaprB 2. The disc s:{n: lu l '=l} satisfies the conditions of
Theorem 2 with respect to the system

}u,r  dzur _ ^,  
6u,  _ 62tt ,

E 
- 

6sz 
-- xlz t  A; 

- 
7F 

: -  ur '

This system has the noncostant solution ur: sifl t, uz'= cos tt which
lies on 0S for all t.

We shall now give an example to illustrate the fact that the non-
zero Gauss curvature is needed in Remark i af.ter Theorem 2.
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Exlvprp 3. The cyl inder S={n:ur2*ttz2=1, hef_1, 1l }  sat i-
sfies the conditions of Theorem 2 with respect to the system

0*, _ 02ut _ ^. Ow, 6ru, _ 6us }ru,
At-f f i :1t2,  Af- fF:-ut ,  i -M-0.

The Gaussian curvature vanishes on the side as well as on the top and
bottom of this cylinder. A solution on 0s is given by u1=sin f, uz=eos t,
and us(x,t) any solution of the heat equation with values in (_1, l).
Thus u need not be independent of x.

We shall now give some examples of invariant sets S in the case
when fqu,ort)-,4u, where A is a constant mxm matrix. We recall
that a closed convex set S is an invariant set if and only if it is inva-
riant with respect to increasing / under the flow.

(5.2) duldt: .4.u.

Thus, if s contains an initial point of a trajectory of. (5.2), it must con-
tain all points of the trajectory with t>0.

It is known [5, S 56, Theo. 2'l that the flow (5.2) has bounded
invariant sets with interior if and only if all the eigenvalues of A have
nonnegative real parts and no nonlinear elementary divisors cor-
respond to any eigenvalue with real part zero. Let s be the matrix
such that S-t AS is the |ordan canonical form but with the usual ones
above the diagonal of each |ordan block replaced by the real part of
the corresponding eigenvalue. It is easily verified that the positive
definite matrix R=Res*-rs-r has the property that u.RAu<0 for all
lr. Therefore rr.RArr is a Lyapounov function for (5.2). Moreover, it
follows that if Z [rr] =Au, then Z [u.Ru] <0.

The ellipsoidd u.Ru<c2 are therefore invariant sets s.
If the bi aft all zero, Theorem 5 shows that if { (*) is any concave

function, the set 3={ (u, x,f): u . Rl<{ (x)2, (x, t)eDX(O, Tl } is an
invariant set in R^+n+r. Thus if u (a O).Ru (a 0) s{ (x), on DX{0}
and on ADx [0, T], then rr .Ru ={ (x), in DX(0, fl.

one may prefer to use sets s other than ellipsoids. For example,
if

/_r0 _1\
a-\  to -  t )

any rectangle of the form lutl<a, lul=10 a is an invariant set. Moreo-
ver, if the bi are all zero and it ttt (x) is any concave function of r, the
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set S=R^:r.DX(0,f] n{u,x, t)z lurl<{(x), lul=l\tl@) }is invariant.
Even if there are no bounded invariant sets with interior, one can

frequently find unbounded invariant sets, and these can also be useful.
For instance, if m=2 and

the origin is a saddle point for the flow (5.2).It is easily seen that any
str ip ar Za, b <.u2 < c with a7 O, b < 0 and c> 0, and any str ip
urSa, b<uz<c with a1O, b<0 and c>0 is invariant.

In fact, one can always find such invariant sets when m--2 except
in the case when A has complex eigenvalues with positive real part.
In this case the origin is an unstable spiral point with respect to the
flow (5.2), and hence the convex hull of any trajectory is the whole
plane. Thus, the only invariant sets in this case are the origin and the
whole plane.

'  
:  ( to - ; )
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