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Abstract

A class of integral recursion models for the growth and spread of
a synchronized single-species population is studied. It is well known
that if there is no overcompensation in the fecundity function, the
recursion has an asymptotic spreading speed c

∗, and that this speed
can be characterized as the speed of the slowest non-constant traveling
wave solution. A class of integral recursions with overcompensation
which still have asymptotic spreading speeds can be found by using the
ideas introduced by Thieme [10] for the study of space-time integral
equation models for epidemics. The present work gives a large sub-
class of these models with overcompensation for which the spreading
speed can still be characterized as the slowest speed of a non-constant
traveling wave. To illustrate our results, we numerically simulate a
series of traveling waves. The simulations indicate that, depending on
the properties of the fecundity function, the tails of the waves may
approach the carrying capacity monotonically, may approach the car-
rying capacity in an oscillatory manner, or may oscillate continually
about the carrying capacity, with its values bounded above and below
by computable positive numbers.

1 Introduction.

The growth and spread of a synchronized single-species population is often

modeled by an integral recursion of the form

un+1(x) = Q[un](x) :=

∫ +∞

−∞

k(x − y)f(un(y))dy. (1.1)

Here un(x) is the density of individuals at point x and time n, f(u) describes

the density-dependent fecundity, and k(x−y) is the dispersal function, which

depends upon the signed distance x−y between the location of birth y and the

location of settlement x. The recursion (1.1) describes the reproduction and

dispersal of a time-synchronized species in which all individuals first undergo

reproduction and then redistribute their offspring before reproduction occurs

once again. This is a good model for annual plants and many insect species.

It is well-known (see, e.g. [12, 13]) that if f(u) is nondecreasing, then

the integral recursion (1.1) has a forward asymptotic spreading speed c∗,

and c∗ can be characterized as the slowest speed of a family of non-constant

traveling wave solutions of (1.1). Moreover it is shown that if fecundity has

the additional property that f(u) ≤ f ′(0)u, then c∗ can be found from a

simple formula which depends only on f ′(0) and the migration kernel k(x).

3



Horst Thieme [9] pointed out that the latter result can be formally obtained

from his results on the spreading speed under a continuous-time integro-

differential equation model by requiring the birth-migration kernel k(t, x) of

this model to take the form δ(t − 1)k(x) with δ the Dirac distribution and

k(x) the dispersal function of equation (1.1)).

It is known that fecundity functions f(u) may not be nondecreasing. This

is, for instance, true of the Ricker function f(u) = uer−u with r > 1, and of

the logistic function f(u) = u[1 + r(1− u)] with 0 < r < 3. If f(u) decreases

on some range of u, the phenomenon of overcompensation is said to occur.

In [10] Thieme showed that a spreading result can still be obtained for

space-time integral equations under assumptions about the nonlinearity f

which imply that f(u) ≤ f ′(0)u but permit f to be the Ricker or logistic

function, and that the number c∗ given by the above-mentioned formula

is, in fact, the spreading speed. Proposition 3.1 will give a more precise

statement of the analogous result for the recursion (1.1). The purpose of

the present work is to show that under some assumptions which are slightly

stronger than those of [10] but which are satisfied by the Ricker and logistic

functions, the speed c∗ can, as in [12, 13], be characterized as the speed of the

slowest member of a family of non-constant traveling wave solutions of (1.1).

That is, we shall show that for every c ≥ c∗ there is a nonnegative solution

of the form un(x) = w(x− nc) of (1.1) with w(∞) = 0 but w bounded away

from zero near −∞, and that there is no such wave when 0 ≤ c < c∗.

The problem will be formulated in Section 2 and 3. Our main result will

be stated and proved in Section 4. Section 5 shows numerical simulations of

the graphs of some of these waves. Section 6 will discuss some relations of

our results to other work. In particular, it will be shown that our theorem

on the one-space-dimensional recursion (1.1) can immediately be applied to

finding the traveling waves of a large class of integral recursion and integral

equation models in any number of dimensions.

2 Hypotheses and definitions.

We shall make the following assumptions, the first two of which are satisfied

by the Ricker function f(u) = uer−u when r > 0.

Hypotheses 2.1.

i. There is a positive constant α0 such that
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a. f(u) is continuous for 0 ≤ u ≤ α0;

b. 0 < f(u) ≤ α0 for 0 < u ≤ α0; and

c. f(0) = 0.

ii. There is a positive constant d ≤ α0 such that

a. f(u) is nondecreasing for 0 < u ≤ d;

b. the specific net growth rate f(u)/u is bounded and nonincreasing

for 0 < u ≤ d;

c. f(u)/u > 1 for 0 < u < d; and

d. f(u)/u ≤ f(d)/d for d ≤ u ≤ α0.

iii. k(x) is a continuous and nonnegative function such that

a.
∫ +∞

−∞
k(x)dx = 1;

b. the integral

K(µ) :=

∫ ∞

−∞

k(x)eµxdx (2.1)

is finite for at least one positive and one negative value of µ.

Remark. Hypotheses 2.1.ii.b, c, and d imply that the function f is right

differentiable at 0, that f ′(0) > 1, and that f(u) ≤ f ′(0)u for 0 ≤ u ≤ α0.

Define the function

f+(u) := max
0≤v≤u

f(v) (2.2)

for 0 ≤ u ≤ α0. (This function is denoted by G(u, 0) in [10].) f+(u) is

a continuous and nondecreasing function, and 0 ≤ f(u) ≤ f+(u) ≤ α0 for

0 ≤ u ≤ α0. Note that Hypothesis 2.1.ii.a shows that f+(u) = f(u) for

u ≤ d.

Since Hypothesis 2.1.ii.c shows that f+(u) > u for 0 < u < d, and since

f+(α0) ≤ α0 by Hypothesis 2.1.i.b, there must be at least one root of the

equilibrium equation f+(u) = u on the interval [d, α0], and there are no such

roots in the interval (0, d). We define α to be the smallest positive solution

of the equilibrium equation f+(u) = u. Then

f(α) = α, and f(u) > u for 0 < u < α. (2.3)

We now define the function

f−(u) := min
u≤v≤α

f(v) for 0 ≤ u ≤ α. (2.4)
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(This function is called G(u, α) in [10].) Clearly, f−(u) ≤ f(u). In fact, f−

is the largest nondecreasing function which lies below f on the interval [0, α].

Because f is nondecreasing on the interval [0, d], we obtain the formula

f−(u) = min{f(u), f−(d)} when 0 ≤ u ≤ d. (2.5)

This and Hypothesis 2.1.ii.c show that f−(u) = f(u) > u for all sufficiently

small positive u. Since f−(α) ≤ f+(α) = α, there is a smallest positive

solution σ of the equation f−(u) = u. This constant has the properties

0 < σ ≤ u∗ ≤ α, f−(σ) = σ, and f−(u) > u for 0 < u < σ, (2.6)

where u∗ is defined to be the smallest positive root of the equation f(u) = u.

u∗ is called the carrying capacity of the system defined by the recursion (1.1).

3 The spreading speed

An approach parallel to the one in [10] can be used to obtain a spreading

speed c∗ for the recursion (1.1) .

Proposition 3.1. Suppose that the Hypotheses 2.1 are satisfied. Define the

numbers

c∗ := inf
µ>0

[

(1/µ) ln

{
∫ ∞

−∞

eµyk(y)dy

}]

(3.1)

and

c∗(−1) := inf
µ>0

[

(1/µ) ln

{
∫ ∞

−∞

e−µyk(y)dy

}]

. (3.2)

Then c∗ is the asymptotic rightward spreading speed of the recursion (1.1) in

following sense:

If the continuous initial function u0(x) is zero for all sufficiently large x,

u0 6≡ 0, and 0 ≤ u0(x) ≤ α, then for any positive ǫ the solution of un of the

integral recursion (1.1) has the following properties

i.

un(x) ≤ α for all x and n.

ii.

lim
n→∞

[

sup
x≥n(c∗+ǫ)

un(x)

]

= 0. (3.3)
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iii. c∗ + c∗(−1) > 0, and

lim inf
n→∞

[

inf
−n(c∗(−1)−ǫ)≤x≤n(c∗−ǫ)

un(x)

]

≥ σ. (3.4)

The proof of this Proposition is based on the well-known result:

Proposition 3.2. Comparison Principle. Let R[u] be an operator which

takes the set of nonnegative bounded continuous functions u(x) into functions

in the same set, and which is monotone in the sense that u ≥ v implies

that R[u] ≥ R[v]. If {vn} and {wn} are two sequences with the properties

vn+1 ≤ R[vn] and wn+1 ≥ R[wn] for all nonnegative n, and if v0(x) ≤ w0(x),

then vn ≤ wn for all positive n.

This property is proved by induction.

The proof of Proposition 3.1 makes use of the two auxiliary operators

Q+[u](x) :=

∫ +∞

−∞

k(x − y)f+(u(y))dy (3.5)

and

Q−[u](x) :=

∫ +∞

−∞

k(x − y)f−(u(y))dy. (3.6)

We also define Q[u] to be the integral operator on the right of (1.1). By

construction, 0 ≤ f−(u) ≤ f(u) ≤ f+(u) ≤ α for 0 ≤ u ≤ α, and hence

Q−[u](x) ≤ Q[u](x) ≤ Q+[u](x) (3.7)

for all nonnegative continuous functions u with u ≤ α. The Comparison

Principle shows that if u+
n is a solution of the recursion

u+
n+1 = Q+[u+

n ],

{u−
n } is a solution of the recursion

u−
n+1 = Q−[u−

n ],

and {un} is a solution of the recursion (1.1), and if 0 ≤ u−
0 (x) ≤ u0(x) ≤

u+(x) ≤ α, then

0 ≤ u−
n (x) ≤ un(x) ≤ u+

n (x) ≤ α

for all x and n. Because f+ and f− are nondecreasing and have the same

derivative at zero, the results of [12] show that the recursions for u+ and u−
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have the spreading speed (3.1). In particular, the statement (3.3) is valid

with u replaced by u+, and the statement (3.4) is valid with u replaced by

u−. In order to finish the proof, we only need to show that c∗ + c∗(−1) > 0.

For this purpose, we use Schwarz’s inequality to see that the logarithms in

the definitions (3.1) and (3.2) of c∗ and c∗(−1) are strictly convex in µ. (For

an equivalent derivation, see the definitions (9.4) and (9.6) and the equation

(9.7) of [13] with ξ = 1.)

Convexity shows that the logarithm on the right of (3.2) is bounded below

by its linearization at 0, and this implies that c∗(−1) is bounded below by the

derivative at µ = 0 of this logarithm. A simple calculation shows that this

derivative is the negative of the derivative of the logarithm in (3.1) at µ = 0.

Therefore, we can obtain a lower bound for c∗ + c∗(−1) by replacing the

logarithm on the right of (3.1) by this logarithm minus µ times its derivative

at zero. Thus, a lower bound for c∗ + c∗(−1) is obtained by finding the

infimum of 1/µ times a strictly convex function which is positive and has the

derivative 0 at 0. It is easily seen that this infimum is bounded below by the

(positive) slope of any tangent line to the graph which lies above the µ-axis

at µ = 0. This shows that c∗ + c∗(−1) > 0. We have thus established all the

statements of Proposition 3.1.

Remarks. 1. The same proof shows that c∗(−1) is the leftward asymp-

totic spreading speed of (1.1).

2. The statement (3.3) shows that for any positive ǫ, all points of any

level set {x : un(x)} = η with η < α must lie in the interval x ≤ n(c∗ + ǫ)

when n is sufficiently large. The statement (3.4) shows that for all sufficiently

large n the interval x ≥ n(c∗ − ǫ) contains points of the above level set with

η < σ, but permits level sets with η > σ to spread more slowly or not at all.

4 The existence of traveling waves.

A solution of the recursion (1.1) is said to be a traveling wave of speed c if

it has the form un(x) = w(x−nc), where w is a function of one variable. By

substituting this form into the recursion, we see that w is a traveling wave if

and only if it satisfies the equation

w(x) = Qc[w](x),

where we have defined the operator

Qc[w](x) := Q[w](x + c) =

∫ ∞

−∞

f(w(y))k(x + c − y)dy. (4.1)
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Thus, a traveling wave is a fixed point of the operator Qc. In a similar

manner, we can define traveling waves of the recursions (3.5) and (3.6) as

fixed points of the operators Q+
c [u](x) := Q+[u](x + c) and Q−

c [u](x) :=

Q−[u](x + c), respectively. Because the operators Q± are order-preserving,

the results of [12, 13], show that for all c ≥ c∗, the integral recursions (3.5) and

(3.6) have nontrivial nonincreasing traveling wave solutions w+(x − nc) and

w−(x− nc), respectively, with w±(+∞) = 0, w+(−∞) = α, and w−(−∞) =

σ. In this section we shall show that the recursion (1.1) also has non-constant

traveling wave solutions of every speed c ≥ c∗.

Our main result is the following theorem, which shows that c∗ can be

characterized as the slowest speed of a class of traveling wave solutions for

the recursion (1.1).

Theorem 4.1. For any c ≥ c∗, the integral recursion (1.1) has a traveling

wave solution un(x) = w(x − nc) with w(x) ≤ α for all x, w(+∞) = 0, and

lim infx→−∞ w(x) ≥ σ. A traveling wave solution w(x − nc) with w(∞) = 0

and lim infx→−∞ w(x) > 0 does not exist if c < c∗.

We shall use three lemmas in the proof of the Theorem.

Lemma 4.1. The number

ℓ := sup{u : 0 < u < d and f(u) < f−(d)} (4.2)

satisfies the inequalities 0 < ℓ ≤ d, and

f−(u) = f+(u) = f(u) for 0 ≤ u ≤ ℓ.

Proof. Because f is continuous and strictly positive for u > 0, f−(d) > 0.

Since f(0) = 0, f(u) < f−(d) for all sufficiently small u, so that ℓ > 0.

Because f(d) ≥ f−(d), ℓ ≤ d. The formula (2.5) shows that f−(u) = f(u)

for u ≤ ℓ. The definition (2.2) shows that f+(u) = f(u) for u ≤ d, and hence

for u ≤ ℓ. This finishes the proof of the Lemma.

Lemma 4.2. If 0 < γ < ℓ/α where ℓ ≤ d is defined by (4.2), and if 0 < u ≤

α, then f−(γu) ≥ γf+(u).

Proof. Since γu ≤ d, Hypothesis 2.1.ii.a shows that

f(v) ≤ f(γu) for 0 ≤ v ≤ γu.
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On the other hand, Hypothesis 2.1.ii.b shows that

f(v) ≤ vf(γu)/(γu) for γu ≤ v ≤ d,

and Hypothesis 2.1.ii.d then yields the same inequality for d ≤ v ≤ α. The

definition (2.2) of f+ and Lemma 4.1 show that

f+(u) ≤ f(γu)/γ = f−(γu)/γ.

This is the statement of the Lemma.

We shall use the usual Banach space C(−∞,∞) of bounded continuous

functions with the maximum norm ||u|| = supx∈(−∞,+∞) |u(x)|. For any

c ≥ c∗, let

Ec = {u(x) : u in C(−∞,∞), γw+(c; x) ≤ u(x) ≤ w+(c; x)}

with 0 < γ < min{σ, ℓ}/α .

Clearly Ec is a bounded nonempty closed convex subset of C(−∞,∞).

Lemma 4.3. The operator

Qc[u](x) := Q[u](x + c) =

∫ ∞

−∞

k(x + c − y)f(u(y))dy

maps Ec into Ec.

Proof. Define the operators

Q±
c [u] =

∫

−∞

k(x + c − y)f±(u(y))dy,

so that Q+
c [w+] = w+. Because f+ ≥ f and f+ is nondecreasing, we see that

if u ≤ w+, then

Qc[u] ≤ Q+
c [u] ≤ Q+

c [w+] = w+.

On the other hand, Lemma 4.2 shows that if u ≥ γw+, then

Qc[u] ≥ Q−
c [u] ≥ Q−

c [γw+] ≥ γQ+
c [w+] = γw+.

Thus if u is in Ec, the same is true of Qc[u]. This is the statement of the

Lemma.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1.
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To show the first statement of the Theorem, we define the operators

Q(m)
c [u](x) =

{

Qc[u](x), if x ≥ −m
max{Qc[u](−m), γw+(c; x)}, if x ≤ −m

for every positive integer m and all u in Ec. In view of Lemma 4.3, Q
(m)
c

takes Ec into Ec.

By multiplying the continuous function k(x) by a suitable cutoff function,

one can, for any positive ǫ, find a continuous function kǫ(x) which vanishes

outside a bounded interval [−Mǫ, Mǫ] and satisfies the inequality

∫ ∞

−∞

|kǫ − k|dx < ǫ/3.

Because kǫ is uniformly continuous, |kǫ(x + η) − kǫ(x)| < ǫ/{6[1 + Mǫ]} for

all sufficiently small η. Since ǫ is arbitrary, it follows that

lim
η→0

∫ ∞

−∞

|k(x + η) − k(x)|dx = 0. (4.3)

This implies that the family Qc[u] with 0 ≤ u ≤ α is equicontinuous. On the

other hand, w+ is uniformly continuous, and hence the family Q
(m)
c [u] is also

equicontinuous. Then Ascoli’s theorem implies that every sequence vn(x) in

Ec has a subsequence vnκ
(x) such that Q

(m)
c [vnκ

](x) converges to a function

s(x) uniformly on every bounded interval. We wish to show that Q
(m)
c [vnκ

](x)

converges to s(x) uniformly on the whole real line (−∞, +∞). For this

purpose we observe that for any given ǫ > 0, there exist M > −m such that

w+(c; M) < ǫ, and N > 0 such that for κ ≥ N , sup−m≤x≤M |Qc[vnκ
](x) −

s(x)| < ǫ. Because both Qc[vnκ
] and s are nonnegative and bounded above

by the nonincreasing function w+(c; x), we see that

sup
x≥M

|Q(m)
c [vnκ

](x) − s(x)| ≤ w+(c; M) < ǫ when κ > N .

Some simple arithmetic shows that when x ≤ −m and κ > N ,

|Q(m)
c [vnκ

](x) − s(x)| = |max{Qc[vnκ
](−m), γw+(c; x)}

− max{s(−m), γw+(c; x)}|

≤ |Qc[vnκ
](−m) − s(−m)| < ǫ.

Since |Q
(m)
c [vnκ

](x) − s(x)| ≤ ǫ for −m ≤ x ≤ M when k ≥ N , we have

shown that Q
(m)
c [vnκ

] converges to s(x) uniformly on the whole real line.

That is, Q
(m)
c takes the convex set Ec into a compact subset of Ec. The

11



Schauder Fixed Point Theorem (see, e. g., [2], pp. 403-406) shows that there

exists w(m)(x) ∈ Ec such that Q
(m)
c [w(m)] = w(m). Because the family w(m)

is again equicontinuous, there is a sequence mi → ∞ as i → ∞ such that

Q
(mi)
c [w(mi)](x) converges to a function w(x) ∈ Ec uniformly for x on every

bounded interval. It follows that w(mi)(x) converges to w(x) uniformly for x

on every bounded interval. This, Hypothesis 2.1.iii.a, and the definition of

Q
(m)
c show that Q

(mi)
c [w(mi)](x) → Qc[w](x) for all x as i→∞. We therefore

have Qc[w](x) = w(x) for all x. It follows that Q[w(· −nc)](x) = w(x− (n +

1)c), so that w is a traveling wave solution of (1.1).

We have shown that for any c ≥ c∗ the recursion (1.1) has a traveling

wave solution w(x − nc) with γw+(c; x) ≤ w(x) ≤ w+(c; x) for all x. Since

w+(c; x) ≤ α for all x and w+(c;∞) = 0, we have w(c; x) ≤ α for all x, and

w(∞) = 0.

To obtain the behavior of w at −∞, we consider the recursion

u−
n+1 = Q−

c [u−
n ]

with the initial condition

u−
0 = γw+.

Lemma 4.2 shows that Q−
c [u−

0 ] ≥ u−
0 , and it follows by induction that u−

n is

nondecreasing in n and nonincreasing in x. Moreover, since Q−
c [w] ≤ Qc[w] =

w and u−
0 ≤ w, induction shows that u−

n ≤ w for all n. In particular,

lim inf
x→−∞

w(c; x) ≥ u−
n (−∞) for all n.

For any fixed n, u−
n (x − z) converges to the constant u−

n (−∞) uniformly on

bounded intervals as z→−∞. Therefore,

un+1(−∞) = f−(u−
n (−∞)).

Since 0 < u0(−∞) = γα < σ, and the u−
n (−∞) are nondecreasing, they must

converge to the nearest solution of the equation, u = f−(u). By definition,

this solution is σ. Thus we have shown that lim infx→−∞ w(c; x) ≥ σ.

It only remains to prove that if there is a solution w(c; x) of the traveling

wave equation w = Qc[w] with w(c,∞) = 0 and lim infx→−∞ w(c; x) > 0,

then c ≥ c∗. Suppose there is such a solution, and choose a nonincreasing

function v−
0 (x) such that v−

0 (x) ≤ w(c; x), 0 < v−
0 (−∞) < σ, and v−

0 (x) = 0

for x ≥ 0. Define v−
n by the recursion v−

n+1 = Q−[v−
n ]. Induction shows that

v−
n (x) ≤ w(c; x − nc), so that for any positive ǫ

lim
n→∞

{

sup
x≥(c+ǫ)n

v−
n (x)

}

≤ lim
n→∞

w(c; nǫ) = 0.
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The definition of the spreading speed c∗ of the recursion for v− and the fact

that ǫ is arbitrarily small show that c∗ ≤ c, and the proof of Theorem 4.1 is

complete.

5 Numerical simulations.

In this section we present some approximations to traveling waves of the

recursion (1.1) with the Laplace kernel

k(|x − y|) = 100e−200|x−y|

and the Ricker recruitment function

f(u) = uer−u.

This function is increasing for 0 ≤ u ≤ 1, and decreasing for u ≥ 1. It is

easily checked that the Hypotheses 2.1 are satisfied if and only if r > 0, and

that the positive solution of the equilibrium equation u = f(u) is

u∗ = r.

Moreover,

f+(u) =

{

f(u) for u ≤ 1

er−1 for u ≥ 1,

so that

α =

{

r for 0 < r ≤ 1

er−1 for r ≥ 1,

while

f−(u) = min{f(u), e2r−1−er−1

},

so that

σ =

{

r for 0 < r ≤ 1

e2r−1−er−1

for r ≥ 1.

The following figures show approximations to the graphs of w(x)/r where

w(x − nc) is a traveling wave of speed c of (1.1), for several choices of r

and c. These graphs were obtained by an iterative process to find a fixed

point of the operator Qc[u] defined in (4.1). The process uses the fact that

a traveling wave of speed c > c∗ of (1.1) behaves like multiple of e−µx at

infinity, where µ is the smaller root of the equation (1/µ) ln[f ′(0)K(µ)] =

(1/µ) ln[er/{1 − (µ/200)2}] = c. A sufficiently small positive number µ was
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chosen, and c was determined from this formula. The initial function u0 was

taken to be of the form u0 = 0.5e−µ(x−5). For each n, un+1 was obtained from

un by setting it equal to a numerical approximation of Qc[un] for x ≤ 15− c

and equating it to .05e−µ(x−5) for x > 15−c. The numerical approximation to

Q[un] was based on the FFT algorithm of [1] with 32769 grid points. Because

the positive equilibrium state is u ≡ r, we have graphed the normalized

function u100/r for various values of r. These functions can be expected to

be good approximations to w(x)/r.

When r ≤ 1, we have α ≤ 1, so that f is increasing on the range 0 ≤ u ≤

α. In this case, it is easily seen that f+ = f− = f for 0 ≤ u ≤ α = σ = u∗ =

r. Hence w = w+ = w− is nonincreasing and has the limits r at −∞ and 0

at +∞.
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Figure 5.1

Figure 5.1 shows an approximation to the graph of w(x)/r with r = 0.9 and

c = 0.30008.

The proof of Lemma 3.10 of Thieme’s paper [10] with a slightly adapted

version of Lemma 3.10 there shows that if un is a solution of (1.1) with

u0 ≤ α = er−1, if r < 2 so that the equilibrium u ≡ r is stable, and if

0 < c1 < c∗, then

lim
n→∞

max
|x|≤nc1

|r − un(x)| = 0.

(Note that, as is the case in our example, k(x) is assumed to be even in

this Theorem, so that the leftward and rightward spreading speeds are both
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equal to c∗.) The definition of a traveling wave shows that the sequence

un(x) = w(x − nc) satisfies (1.1). Therefore, for any positive ǫ there is an

Nǫ such that |r − w(x)| ≤ ǫ when −(c + c1)n ≤ x ≤ −n(c − c1) and n ≥ Nǫ.

Because c1 < c∗ ≤ c, we have c − c1 > 0. If Nǫ is also chosen so large that

(2Nǫ+1)c1 > c, the above intervals for n and n+1 overlap when n ≥ Nǫ, and

we conclude that |r −w(x)| ≤ ǫ for all x ≤ −(c− c1)Nǫ. Since ǫ is arbitrary,

we have shown that

lim
x→−∞

w(x) = r when r < 2.

That is, as long as r < 2, the wave w has the limit r at −∞.
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Figure 5.2

Figure 5.2 shows an approximation to the graph of w(x)/r when r = 1.6 and

c = 0.5334. We see that the graph oscillates about the value 1, and that the

oscillations are damped out for large negative x.

When r > 2, the equilibrium solution un = r is unstable.
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Figure 5.3

Figure 5.3 shows an approximation to the graph of w(x)/r for r = 2.1 and

c = .70008. We note that the wave seems to continue oscillating all the way

to −∞. It appears, in fact, that the oscillations for large negative x are

periodic of period 2c, but we have not been able to prove this. As r becomes

larger, the periods in the tail can be expected to become shorter, so that the

tail will eventually look chaotic.
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Figure 5.4.
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This behavior is illustrated by Figure 5.4, which shows the approximate wave

of speed 1.0001 when r = 3.

6 Discussion.

We have shown that for a class of integral recursion models with overcompen-

sation, the asymptotic spreading speed can be characterized as the smallest

speed of a natural class of non-constant traveling waves. When k(x) is the

Laplace kernel (β/2)e−β|x|, M. Kot [6] has predicted the existence of such

traveling waves by means of a heuristic argument, and has asked other re-

searchers to come up with a proof. Our Theorem 4.1 provides such a proof.

In the case of the logistic recruitment function f(u) = u[1+r(1−u)] with

0 < r < 3, M. Kot’s simulations seem to indicate that for r < 2, including

some values at which the wave is not monotone, the solution of an initial value

problem converges “in shape” to the traveling wave of speed c∗. However,

simulations in [6], and unpublished simulations for the Ricker function by

N. Shigesada and K. Kawasaki seem to show that when the parameter is

slightly larger than the value at which the constant equilibrium becomes

unstable, the solution of the initial value problem settles down “in shape”,

not to a time-independent solution, but to a solution which is periodic of

period 2 in n, and that the period grows as stable spatially independent

cycles arise with increasing r. Such solutions cannot converge to a steady

wave of the kind we have constructed. However, Kot conjectured that the

solutions which approach a k-cycle will converge in shape to a traveling wave

of speed kc∗ of the recursion u(n+1)k = Qk[unk], with Qk the kth iterate of

the operator Q. We know of no way to prove this conjecture.

The present paper has only treated the recursion (1.1) for a one-dimen-

sional habitat. However, the traveling wave solution w(ξ · x− nc) of speed c

in the direction of the analogous recursion in two or more space dimensions

is a solution of a recursion of the form (1.1), where the kernel k depends on

c and ξ. (See, e.g., [13].) Therefore, Theorem 4.1 of the present paper still

gives the result that such a traveling wave exists if and only if c ≥ c∗(ξ),

where c∗(ξ) is the spreading speed defined in [13] for the operator with the

nonmonotone function f replaced by f+.

In [9] and [10] H. Thieme considered an integral equation model for the

population density u(t, x) of mature individuals near x at time t, which can
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be written in the form

u(t, x) = a0(t, x) +

∫ t−t0

0

∫ ∞

−∞

k(s, y)f(u(t− s, x − y))dyds. (6.1)

Here t0 is an initial time, a0(t, x) is the (predictable) density of mature indi-

viduals which were born before the initial time, f is a fecundity function, and

k(s, y) represents the density of individuals which have survived and moved

by a distance y during a time s after birth. In [3] O. Diekmann considered

an epidemic model which also has the form (6.1), and showed that one can

define a traveling wave of this equation in the following manner: Take a limit

as the initial time t0 recedes to −∞, and a0 becomes 0, and look for a solu-

tion of the form u(t, x) = w(x − ct) of the resulting equation. If we define

the variables X = x − ct and Y = y − cs, the equation for w takes the form

w(X) =

∫ ∞

−∞

kc(Y )f(w(X − Y ))dY, (6.2)

where we have defined the one-dimensional kernel

kc(Y ) :=

∫ ∞

0

k(s, Y + cs)ds.

We note that the equation for w says that w is an equilibrium, that is, a

traveling wave of speed 0, of the recursion (1.1) with the migration kernel kc.

As long as f(u) is nondecreasing, as it is in [3], this wave exists if and only if

the spreading speed of this recursion is nonpositive. The formula (3.1) and

the definition of kc show that this condition is equivalent to the inequality

∫ ∞

−∞

∫ ∞

0

eµ(y−cs)k(s, y)dsdy ≤ 1 for all µ > 0.

Diekmann and Thieme independently found that the spreading speed of the

equation (6.1) is the infimum of the numbers c such that this inequality is

valid. Diekmann then concluded that for his equation, for which f is non-

decreasing there are traveling waves for all c which are at least equal to this

spreading speed. The same conclusion holds for the more general but nonde-

creasing functions f treated in [9]. For the functions with overcompensation

treated in [10], on can obtain the same conclusion by using Theorem 4.1,

provided the kernel kc and the fecundity f satisfy the Hypotheses 2.1.

It may well be true that the same idea can be applied to the more general

model of H. R. Thieme and X. Q. Zhao in [11], in which the product function

k(s, y)f(u(t−s, x−y)) in (6.1) is replaced by a function F (u(t−s, x−y), s, y),

18



with the function F (v, s, y) subject to suitable hypotheses. The existence of

a spreading speed is established under hypotheses similar to those of [10],

but the existence of a traveling wave is only proved under the additional

assumption that F (v, s, y) is nondecreasing in v. The traveling wave satisfies

the equation (6.2) with the product mcf replaced by a function Fc(v, Y ). The

proof of Theorem 4.1 should establish the existence of waves under weaker

hypotheses on F .
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