# DENSITY ESTIMATES FOR MINIMAL SURFACES AND SURFACES FLOWING BY MEAN CURVATURE 

ROBERT GULLIVER


#### Abstract

Let $\Sigma$ be a two-dimensional immersed minimal surface in a manifold $M^{n}$, having a curve $\Gamma$ as boundary. We do not assume that $\Sigma$ has minimum area. It will be shown that the number of sheets of $\Sigma$ passing through a point $p \in M$ (the density of $\Sigma$ at $p$ ) will be bounded by geometric measures of the complexity of $\Gamma$. However, such an estimate must also depend on the geometry of the ambient manifold $M$.

Suppose that $M$ is simply connected, and that the sectional curvatures of $M$ are less than or equal to a nonpositive constant $-\kappa^{2}$. Let $\mathcal{A}(\Gamma)$ denote the minimum over $p \in M$ of the area of the geodesic cone over $\Gamma$ with vertex $p$. If for some integer $m \geq 0$ the total absolute curvature of $\Gamma$ satisfies $$
\int_{\Gamma}|\vec{k}| d s \leq 2 \pi m+\kappa^{2} \mathcal{A}(\Gamma)
$$ then the number of sheets through one point is at most $m-1$. In particular, if this inequality holds with $m=2$, then $\Sigma$ must be embedded.

An analogous result holds if $M$ is a hemisphere. We shall also discuss conjectures about analogous estimates for a surface which evolves by its mean curvature vector.

The Euclidean case $M=R^{n}$ was proved by Eckholm, White and Wienholtz [EWW]. This report is based on joint work with Jaigyoung Choe [CG].


## 1. Introduction

The elliptic problem of finding minimal surfaces in three-dimensional space has a compelling geometric interest. The parametric theory pioneered by Radó and Douglas (see [D] and [R]) may be used to find a minimal surface of the type of the disk bounded by a given curve in $\mathbf{R}^{3}$, which must be immersed (see [G] or [A]) but may well intersect itself. Since self-intersections are unrealistic for such physical contexts as soap films or biological membranes, the question of whether a minimal surface is embedded carries great significance.

In a recent paper, Ekholm, White, and Wienholtz [EWW] ingeniously proved the embeddedness of any minimal surface bounded by a curve $\Gamma$ in $\mathbf{R}^{n}$ with total curvature $\leq 4 \pi$. Their result may be seen to follow from the following three observations. (i) The logarithm of the distance function $\rho(x)=d(x, p)$ in $\mathbf{R}^{n}$ is a fundamental solution of the Laplacian on a two-dimensional plane through $p$. Similarly, $G(x)=\log \rho(x)$ is harmonic on a cone $p \nVdash \Gamma$ over $\Gamma$ with vertex $p$. By contrast, $G(x)$ is strictly subharmonic on a nonplanar (branched) minimal surface $\Sigma$ in $\mathbf{R}^{n}$. Further, at each point of $\Gamma$, the outward normal derivative of $G(x)$ in the cone $p \circledast \Gamma$ is greater than or equal to the outward normal derivative

[^0]of $G(x)$ in the minimal surface $\Sigma$. As a consequence, the density of $\Sigma$ at $p$ is less than or equal to the density of the cone. This part of their proof is intimately related to the wellknown monotonicity formula. (ii) By the Gauss-Bonnet theorem, $2 \pi$ times the density at $p$ of the cone $p \nVdash \Gamma$, which is intrinsically flat, is at most the total curvature of $\Gamma$. (iii) Since an immersed submanifold must have density at least two at a point of intersection, it follows that a branched minimal surface whose boundary has total curvature $4 \pi$ or less must be embedded. The theorem of Fáry and Milnor, that a curve with total curvature at most $4 \pi$ is unknotted $[\mathrm{F}],[\mathrm{M}]$, follows as a consequence of the existence of a branched minimal surface of the type of the disk with boundary curve $\Gamma$ (see $[\mathrm{Mo}]$ for the general case).

In contrast with the problem of minimal surfaces, the parabolic problem of flow by mean curvature has little difficulty with self-intersections. In fact, if a hypersurface $\Sigma_{t}$ evolves according to

$$
\begin{equation*}
\frac{\partial \Sigma_{t}}{\partial t}=H \vec{\nu} \tag{1}
\end{equation*}
$$

if $\Sigma_{0}$ is embedded; and if the boundary of $\Sigma_{t}$ never touches the interior of $\Sigma_{t}$; then $\Sigma_{t}$ will remain embedded for all positive time (assuming it exists). Here $H$ denotes the mean curvature of the evolving surface $\Sigma_{t}$, and $\vec{\nu}$ is its unit normal vector.

One should therefore view the result of [EWW] as a density estimate for a nonplanar minimal surface $\Sigma$, depending only on the total curvature of its boundary curve $\Gamma$ :

$$
\begin{equation*}
\Theta_{\Sigma}(p)<\frac{1}{2 \pi} \int_{\Gamma}|\vec{k}| d s \tag{2}
\end{equation*}
$$

Here, $\vec{k}$ is the curvature vector of $\Gamma$. In this context, there are natural conjectures which suggest themselves for the problem of mean-curvature flow. Roughly speaking, one expects that the density of a surface evolving by mean curvature can be bounded by an average density at time $t=0$ and the total curvature of the boundary of $\Sigma_{t}$ at times between 0 and $t$. See section 4 below.

The paper [CG] extends the result of [EWW] to minimal surfaces in an $n$-dimensional Riemannian manifold $M$ with sectional curvature $K^{M}$ bounded above by a nonpositive constant $\widehat{K}$, or with constant positive sectional curvature. The two conclusions (i), (ii) above can be appropriately generalized for these purposes, and (iii) is unchanged. Thus, it is proved that if $\Gamma$ is a Jordan curve in $M^{n}$ with total curvature

$$
\begin{equation*}
\mathcal{C}_{\mathrm{tot}}(\Gamma):=\int_{\Gamma}|\vec{k}| d s \leq 4 \pi+\inf _{p \in M}(-\widehat{K}) \operatorname{Area}(p * \Gamma) \tag{3}
\end{equation*}
$$

then every branched minimal surface bounded by $\Gamma$ is embedded (see Theorem 2 and Theorem 3.) The cone $p \nVdash \Gamma$ is defined as the union of geodesic segments from $p$ to points of $\Gamma$. Somewhat more precisely, in inequality (3), the infimum of area of cones $p \mathbb{\otimes}$ is taken only over vertices $p$ lying in the convex hull $\mathcal{H}_{\mathrm{cvx}}(\Gamma)$ of $\Gamma$. Even more precisely, we may restrict to points $p$ which lie in the mean-convex hull of $\Gamma$, that is, the intersection of smooth closed domains in $M^{n}$ whose boundaries have non-strictly inward mean curvature.

The embedding theorem is a consequence of the following density estimate: for any stationary, non-totally geodesic minimal surface $\Sigma^{2}$ in $M^{n}$ with boundary $\Gamma$, the density
of $\Sigma$ at $p$ satisfies

$$
\begin{equation*}
2 \pi \Theta_{\Sigma}(p)<\mathcal{C}_{\mathrm{tot}}(\Gamma)+\widehat{K} \operatorname{Area}(p \mathbb{*} \Gamma) \tag{4}
\end{equation*}
$$

The same paper treats the case when $M$ has positive sectional curvature $K^{M}$. With the additional assumptions that $K^{M} \equiv \widehat{K}$ is a positive constant, and that $\Sigma$ lies in a ball of $M$ of radius $\pi /(2 \sqrt{\widehat{K}})$, the corresponding density estimate (4) is proved, along with the embeddedness of $\Sigma$ if (3) holds. Note that in this case, the right-hand side of (3) involves the supremum of areas of cones $p \circledast \Gamma$ over $\Gamma$. with vertex lying in the convex hull of $\Gamma$. All these estimates are sharp.

Morrey proved that any closed curve in a manifold of bounded geometry is the boundary of a branched minimal surface of the type of the disk [Mo]. As a consequence, the results of [CG] give a new proof of the unknotting theorem for curves of total curvature at most $4 \pi$ in a Hadamard-Cartan manifold [AB], [S]. In addition, a new proof is given of a slightly weaker version of the unknotting theorem in hyperbolic space, with sectional curvatures $\equiv-1$, for curves with total curvature at most $4 \pi$ plus the area of the smallest cone $q \times \Gamma$ among $q \in \Gamma[\mathrm{BH}]$. Further, new unknotting results are proved, including one which is a simultaneous generalization of the two just mentioned: if $\Gamma$ is a curve of total curvature at most $4 \pi+\kappa^{2} \mathcal{A}(\Gamma)$ in a simply-connected manifold with sectional curvatures bounded above by $-\kappa^{2} \leq 0$, then $\Gamma$ is unknotted (see Theorem 3).

## 2. Methods for Density Estimates: Flat Space

We shall first sketch the proof of the density estimate in the simplest case: $M=\mathbf{R}^{n}$. This proof is analogous to the proof given in [EWW], although it differs somewhat in the approach.

Let $\Gamma$ be a smooth curve in $\mathbf{R}^{n}$ which bounds a minimal surface $\Sigma$, and consider a point $p \in \Sigma$. We will compare $\Sigma$ with the Euclidean cone $C:=p \mathbb{N}$. The proof of the density estimate (4) at $p$, with $\widehat{K}=0$, is broken up into the first two parts (i) (see Proposition 1 below) and (ii) (see Proposition 2 below), as indicated in the Introduction. Write $\rho(x):=|x-p|$ for $x \in \mathbf{R}^{n}$, and $G(x):=\log \rho(x)$.

Lemma 1. Let $N^{2}$ be a two-dimensional manifold immersed in $\mathbf{R}^{n}$. Then except at $p$,

$$
\triangle_{N} G(\rho)=\frac{2}{\rho^{2}}\left(1-\left|\nabla_{N} \rho\right|^{2}\right)+\frac{d \rho(\vec{H})}{\rho}
$$

where $\vec{H}$ is the mean curvature vector of $N$.

Proof. Elementary calculations show that the Hessian in $\mathbf{R}^{n}$ :

$$
\bar{\nabla}^{2} \rho^{2}=2 g
$$

where $g$ is the Euclidean metric tensor.

The well-known trace formula states that

$$
\triangle_{N} G=\sum_{\alpha=1}^{2} \bar{\nabla}^{2} G\left(e_{\alpha}, e_{\alpha}\right)+d G(\vec{H})
$$

where $\left\{e_{1}, e_{2}\right\}$ is an orthonormal basis for the tangent plane to $N$.
This formula leads us by straightforward computations to the conclusion.
Note that the mean-curvature term $\frac{d \rho(\vec{H})}{\rho}$ vanishes in both cases $N=\Sigma$ and $N=C$. Since the gradient $\bar{\nabla} \rho$ in $\mathbf{R}^{n}$ has norm 1 , the gradient on $\Sigma$ has norm $\leq 1$, implying ${\Delta_{\Sigma}} G(\rho) \geq 0$. Since $\bar{\nabla} \rho$ is tangent to the cone $C$, we find $\triangle_{C} G(\rho)=0$.

In the next two propositions, we shall first assume that $C \backslash\{p\}$ is immersed in $M$. Results such as equation (5) and (6) below may be proved in the general case by approximation.

Proposition 1. (Density Comparison) Let $\Gamma$ be a $C^{2}$ immersed closed curve in $\mathbf{R}^{n}$. Choose $p \in \mathbf{R}^{n} \backslash \Gamma$. If $\Sigma^{2}$ is a branched minimal surface in $\mathbf{R}^{n}$ with boundary $\partial \Sigma=\Gamma$, and $C$ is the cone $p \circledast \Gamma$ over $p$, then their densities at $p$ satisfy the inequality

$$
\Theta_{\Sigma}(p)<\Theta_{C}(p)
$$

unless $\Sigma$ lies in a plane.
Proof. As we have just seen, $\triangle_{\Sigma} G \geq 0$ and $\triangle_{C} G \equiv 0$. For small $\varepsilon>0$, write $C_{\varepsilon}:=$ $C \backslash B_{\varepsilon}(p)$, and similarly $\Sigma_{\varepsilon}$. Then the boundary of $\Sigma_{\varepsilon}$ is $\Gamma \cup\left(\Sigma \cap \partial B_{\varepsilon}(p)\right)$. Let $\nu_{\Sigma}\left(\nu_{C}\right.$, respectively) be the outward unit normal vector tangent to $\Sigma_{\varepsilon}$ at $\partial \Sigma_{\varepsilon}$ (to $C_{\varepsilon}$ at $\partial C_{\varepsilon}$, resp.). Then

$$
0 \leq \int_{\Sigma_{\varepsilon}} \triangle_{\Sigma} G(\rho) d A=\int_{\partial \Sigma_{\varepsilon}} \nu_{\Sigma} \cdot \bar{\nabla} G d s=\int_{\Sigma \cap \partial B_{\varepsilon}(p)} \frac{\nu_{\Sigma} \cdot \bar{\nabla} \rho}{\varepsilon} d s+\int_{\Gamma} \frac{\nu_{\Sigma} \cdot \bar{\nabla} \rho}{\rho} d s
$$

As $\varepsilon \rightarrow 0$, along the small boundary component $\Sigma \cap \partial B_{\varepsilon}(p), \nu_{\Sigma} \cdot \bar{\nabla} \rho \rightarrow-1$ uniformly, and

$$
\frac{L\left(\Sigma \cap \partial B_{\varepsilon}(p)\right)}{2 \pi \varepsilon} \rightarrow \Theta_{\Sigma}(p)
$$

Along $\Gamma, \nu_{\Sigma} \cdot \bar{\nabla} \rho \leq \nu_{C} \cdot \bar{\nabla} \rho$. Hence as $\varepsilon \rightarrow 0$, we find

$$
2 \pi \Theta_{\Sigma}(p) \leq \int_{\Gamma} \frac{\nu_{C} \cdot \bar{\nabla} \rho}{\rho} d s
$$

Similarly, along $C \cap \partial B_{\varepsilon}(p)$, we have $\nu_{C} \equiv-\bar{\nabla} \rho$. After applying the divergence theorem to the vector field $\nabla_{C} G(\rho)$ on $C_{\varepsilon}$, we find

$$
\begin{equation*}
2 \pi \Theta_{C}(p)=\int_{\Gamma} \frac{\nu_{C} \cdot \bar{\nabla} \rho}{\rho} d s \tag{5}
\end{equation*}
$$

This implies $\Theta_{\Sigma}(p) \leq \Theta_{C}(p)$. If equality holds, then ${\Delta_{\Sigma}}$. $\equiv 0$, which requires $\left|\nabla_{\Sigma} \rho\right| \equiv$ 1 according to Lemma 1 . This can only happen when the minimal surface $\Sigma$ is flat.

Proposition 2. (Gauss-Bonnet) Let $\Gamma$ be a $C^{2}$ immersed closed curve in $\mathbf{R}^{n}$. Choose $p \in \mathbf{R}^{n} \backslash \Gamma$. If $C$ is the cone $p \mathbb{\Gamma}$ over $p$, then its density at $p$ is given by

$$
\begin{equation*}
2 \pi \Theta_{C}(p)=-\int_{\Gamma} \vec{k} \cdot \nu_{C} d s \tag{6}
\end{equation*}
$$

Proof. Recall that $C$ is intrinsically flat: $K^{C} \equiv 0$. Also, its inner boundary component $C \cap \partial B_{\varepsilon}(p)$ has curvature vector $\vec{k}=\frac{1}{\varepsilon} \nu_{C}$. Finally, $C_{\varepsilon}$ is a topological annulus, so $\chi\left(C_{\varepsilon}\right)=0$. Therefore, by the Gauss-Bonnet Theorem,
$0=\int_{C_{\varepsilon}} K^{C} d A=\int_{C \cap \partial B_{\varepsilon}(p)} \vec{k} \cdot \nu_{C} d s+\int_{\Gamma} \vec{k} \cdot \nu_{C} d s=\frac{L\left(C \cap \partial B_{\varepsilon}(p)\right)}{\varepsilon}+\int_{\Gamma} \vec{k} \cdot \nu_{C} d s$.
But as $\varepsilon \rightarrow 0, \frac{L\left(C \cap \partial B_{\varepsilon}(p)\right)}{\varepsilon} \rightarrow 2 \pi \Theta_{C}(p)$.
Theorem 1. Let $\Sigma^{2}$ be a minimal surface in $\mathbf{R}^{n}$ with boundary curve $\Gamma$. For any point $p \in \mathbf{R}^{n}$,

$$
2 \pi \Theta_{\Sigma}(p)<\mathcal{C}_{\mathrm{tot}}(\Gamma)
$$

unless $\Sigma$ lies in a plane.
Proof. Follows immediately from Proposition 1 and Proposition 2, since at each point of $\Gamma,-\vec{k} \cdot \nu_{C} \leq|\vec{k}|$.

## 3. Methods for Density Estimates: Curved Space

If the ambient manifold $M$ has constant sectional curvature $K^{M} \equiv \widehat{K}$, then results analogous to Lemma 1, Proposition 1 and Proposition 2 above may be proved in a similar fashion to the Euclidean case $\widehat{K}=0$ of Section 2. More precisely, when $\widehat{K}>0$, we replace the Green's function $G(x)=\log \rho(x)$ of $\mathbf{R}^{2}$ with the Green's function of the 2 -sphere of constant Gauss curvature $\widehat{K}$ :

$$
G(x)=\log \tan \frac{1}{2} \rho(x) \sqrt{\widehat{K}} ;
$$

or, in the case $\widehat{K}=:-\kappa^{2}<0$, with the Green's function of the 2 -dimensional hyperbolic plane of constant Gauss curvature $\widehat{K}$ :

$$
G(x)=\log \tanh \frac{1}{2} \kappa \rho(x)
$$

In this more general case, the conclusion of Proposition 1 is unchanged, and the conclusion of Proposition 2 becomes

$$
2 \pi \Theta_{C}(p)=-\int_{\Gamma} \vec{k} \cdot \nu_{C} d s+\widehat{K} \operatorname{Area}(p \circledast \Gamma)
$$

The density estimate is a consequence:
Theorem 2. Suppose $M^{n}$ is a complete, simply connected Riemannian manifold with constant sectional curvatures $K^{M} \equiv \widehat{K}$. Let $\Sigma^{2}$ be a minimal surface in $M^{n}$ with boundary curve $\Gamma$. In case $\widehat{K}>0$, we assume that $\Sigma \cup \Gamma$ lies in an open hemisphere of the sphere $M^{n}$. Then for any point $p \in \Sigma$,

$$
2 \pi \Theta_{\Sigma}(p)<\mathcal{C}_{\mathrm{tot}}(\Gamma)+\widehat{K} \operatorname{Area}(p * \Gamma)
$$

unless $\Sigma$ is totally geodesic.
Remark 1. In the case of constant positive sectional curvatures, it is not completely necessary to require that $\Sigma \cup \Gamma$ lie in an open hemisphere. The proof continues to hold if, instead, it is assumed that the mean-convex hull of $\Gamma$ in $M^{n}$ is compact and does not contain two antipodal points. It is not difficult to construct such examples which do not lie in a hemisphere, using, for example, certain unstable minimal hypersurfaces constructed in [PR].

On the other hand, when $M$ has variable sectional curvature, it should be observed that the cone $p \nVdash \Gamma$ may lie in a region of $M$ whose geometry is unrelated to the geometry of $M$ near $\Sigma$. Therefore, it is essential to consider a second Riemannian metric $(C, \widehat{g})$ on the geodesic cone $(C, g)$, where $g$ is the metric on $C$ induced from $M$. We shall also write $\widehat{C}$ for the singular Riemannian manifold $(C, \widehat{g})$. We choose the metric $\widehat{g}$ of $\widehat{C}$ characterized by the properties that the radial unit-speed geodesics which generate $C=p \nVdash \Gamma$ remain unit-speed geodesics in $\widehat{C}$; that the curve $\Gamma$ has the same arc length in either $C$ or $\widehat{C}$ (or in $M$ ); that each radial geodesic meets $\Gamma$ in the same angle measured in $C$ or in $\widehat{C}$; and that $\widehat{C}$ has constant Gauss curvature $\widehat{K}$ away from the singular point $p$. This metric was introduced by Choe in his study of isoperimetric inequalities on minimal surfaces ([C].)

In the rest of this section, we shall treat explicitly only the case $\widehat{K}=-\kappa^{2}<0$. Some of the corresponding formulas for $\kappa=0$ have already been given in section 2 above; others follow from limits of standard functions as $\kappa \rightarrow 0$. For the case $\widehat{K}>0$, see [CG].

Lemma 2. Let $N^{2}$ be a two-dimensional manifold immersed in a complete, simply connected Riemannian manifold $M$ whose sectional curvature is bounded above by $-\kappa^{2}, \kappa>$ 0 . Then except at $p$,

$$
\triangle_{N} G(\rho) \geq 2 \kappa^{2} \frac{\cosh \kappa \rho}{\sinh ^{2} \kappa \rho}\left(1-\left|\nabla_{N} \rho\right|^{2}\right)+\kappa \frac{d \rho(\vec{H})}{\sinh \kappa \rho}
$$

Proof. The Hessian comparison theorem shows that

$$
\bar{\nabla}^{2} \rho \geq \kappa \operatorname{coth} \kappa \rho(g-\bar{\nabla} \rho \otimes \bar{\nabla} \rho)
$$

where $\rho(x)$ is the distance from $p$ to $x$ in $M$. We apply the trace theorem as in the proof of Lemma 1.

As a consequence of Lemma 2, we see that $G(x)=\log \tanh \frac{1}{2} \kappa \rho(x)$ is subharmonic on the minimal surface $\Sigma$ and harmonic on the hyperbolic cone $\widehat{C}$.

In the next four propositions, as in section 2 above, we shall first assume that $C \backslash\{p\}$ is immersed in $M$. The key results obtained in the proofs of the propositions may be proved in the general case by approximation.

Proposition 3. (Density Comparison) Let $\Sigma^{2}$ be a branched minimal surface in an $n$ dimensional simply connected Riemannian manifold $M$ with sectional curvature $\leq-\kappa^{2}$.

If $\widehat{C}$ is the hyperbolic cone defined above, then $\Theta_{\Sigma}(p) \leq \Theta_{\widehat{C}}(p)$, with strict inequality unless $\Sigma$ is totally geodesic with constant Gauss curvature $-\kappa^{2}$.

Proof. As we have just shown, $\triangle_{\Sigma} G(x) \geq 0$ and $\triangle_{\widehat{C}} G(x) \equiv 0$.
Then with the notation of Proposition 1,

Note that

$$
\kappa \frac{L\left(\Sigma \cap \partial B_{\varepsilon}(p)\right)}{2 \pi \sinh \kappa \varepsilon} \rightarrow \Theta_{\Sigma}(p) .
$$

Also, it should be observed that

$$
\nu_{\Sigma} \cdot \bar{\nabla} \rho \leq \nu_{C} \cdot \bar{\nabla} \rho \text { along } \Gamma .
$$

Thus, we find that the inequality above implies

$$
\begin{equation*}
2 \pi \Theta_{\Sigma}(p) \leq \int_{\Gamma} \kappa \frac{\nu_{C} \cdot \bar{\nabla} \rho}{\sinh \kappa \rho} d s \tag{7}
\end{equation*}
$$

Note here that $\nu_{C}$, considered as a tangent vector to $C$, is also the outward unit normal vector in the metric $\widehat{g}$. Along the intrinsic distance sphere $\partial \widehat{B}_{\varepsilon}(p) \subset \widehat{C},-\nabla \rho$ is the outward unit normal vector. Hence since $G$ is harmonic on $\widehat{C}$, as $\varepsilon \rightarrow 0$,

$$
0=\int_{\widehat{C}_{\varepsilon}} \triangle_{\widehat{C}} G(x) d A \rightarrow-2 \pi \Theta_{\widehat{C}}(p)+\int_{\Gamma} \kappa \frac{\nu_{C} \cdot \nabla \rho}{\sinh \kappa \rho} d s
$$

Therefore, by inequality (7),

$$
2 \pi \Theta_{\widehat{C}}(p)=\int_{\Gamma} \kappa \frac{\nu_{C} \cdot \bar{\nabla} \rho}{\sinh \kappa \rho} d s \geq 2 \pi \Theta_{\Sigma}(p)
$$

which is the desired estimate.
If equality holds, then $\triangle_{\Sigma} G \equiv 0$, which requires $\left|\nabla_{\Sigma} \rho\right| \equiv 1$ according to Lemma 2. But this means that $\Sigma$ is a cone over $p$, as well as being minimal, which can only occur when $\Sigma$ is totally geodesic. Moreover, $\Delta_{\Sigma} G \equiv 0$ now implies that $\Delta_{\Sigma} \rho \equiv \kappa \operatorname{coth} \kappa \rho$, which, along with $K_{\Sigma} \leq K^{M} \leq-\kappa^{2}$, implies that $\Sigma$ has constant Gauss curvature $K_{\Sigma} \equiv-\kappa^{2}$.

Proposition 4. (Geodesic Curvature Comparison) Let $\Gamma$ be a $C^{2}$ curve in $M^{n}$, a manifold with sectional curvatures $\leq-\kappa^{2}$, and let $C$ be the cone $p \times \Gamma$. If $\widehat{C}$ is the cone $C$ with the constant curvature metric $\widehat{g}$, as defined above, then $k(q) \geq \widehat{k}(q)$ for almost all $q \in \Gamma$, where $k$ and $\widehat{k}$ denote the inward geodesic curvatures of $\Gamma$ in $C$ and $\widehat{C}$, respectively.

Proof. The proof follows from comparison of the Jacobi equations along a radial geodesic $\gamma$ through $p$ :

$$
\begin{equation*}
f^{\prime \prime}(t)+K^{C}(\gamma(t)) f(t)=0 \text { and } \widehat{f}^{\prime \prime}(t)+\widehat{K} \widehat{f}(t)=0 \tag{8}
\end{equation*}
$$

with initial conditions $f(0)=0=\widehat{f}(0)$ and $f^{\prime}(0)=a_{0}>0, \widehat{f}^{\prime}(0)=\widehat{a}_{0}>0$, where $K^{C}=K^{M} \leq-\kappa^{2}=\widehat{K}$ from the Gauss equations for $C$ as a submanifold of $M$. The
geodesic curvature of $C \cap \partial B_{\rho_{0}}(p)$ (as a curve in $C$ ) is $f^{\prime}\left(\rho_{0}\right) / f\left(\rho_{0}\right)$, and similarly the geodesic curvature of $\widehat{C} \cap \partial B_{\rho_{0}}(p)$ is $\widehat{f^{\prime}}\left(\rho_{0}\right) / \widehat{f}\left(\rho_{0}\right)$. The comparison theorem shows that

$$
\begin{equation*}
f^{\prime} / f \geq \hat{f}^{\prime} / \widehat{f} \tag{9}
\end{equation*}
$$

Since $C$ and $\widehat{C}$ have the same metric at points of $\Gamma$, one may show that

$$
k-\widehat{k}=\left(\frac{f^{\prime}}{f}-\frac{\widehat{f}^{\prime}}{\widehat{f}}\right) \cos \varphi \geq 0
$$

where at each point of $\Gamma, \varphi$ is the angle in either metric between $\nu_{C}=\nu_{\widehat{C}}$ and $\nabla \rho=\widehat{\nabla} \rho$. (For details see [CG], Proposition 4.) Thus $k \geq \widehat{k}$.

Proposition 5. (Area Comparison) Let $\Gamma$ be a $C^{2}$ curve in $M^{n}$, and let $C=p \mathbb{} \Gamma$. If $\widehat{C}$ is the cone $C$ with the constant curvature metric $\widehat{g}$, as defined above, then the areas Area $(C) \leq \operatorname{Area}(\widehat{C})$.

Proof. We continue to use the notation $f(t), \widehat{f}(t), \varphi(q)$ as in the proof of Proposition 4, with the following refinement. Along the radial unit-speed geodesic $\gamma_{q}:[0, \rho(q)] \rightarrow C=$ $p \nVdash \Gamma$, where $\gamma_{q}(0)=p, \gamma_{q}(\rho(q))=q \in \Gamma$, which is a geodesic in both metrics $g$ and $\widehat{g}$, let $f(t)=f_{q}(t)$ or $\widehat{f}(t)=\widehat{f}_{q}(t)$ denote solutions of the Jacobi equation (8). We may choose the normalizations $f_{q}^{\prime}(0)=a_{0}(q)$ and $\widehat{f}_{q}^{\prime}(0)=\widehat{a}_{0}(q)$ so that $f_{q}(\rho(q))=\cos \varphi(q)=$ $\widehat{f}_{q}(\rho(q))$ as well as $f_{q}(0)=0=\widehat{f}_{q}(0)$, since $K^{C}$ and $\widehat{K}$ are nonpositive. Then

$$
\operatorname{Area}(C)=\int_{\Gamma} \int_{0}^{\rho(q)} f_{q}(t) d t d s(q)
$$

and similarly for $\operatorname{Area}(\widehat{C})$. But $f_{q}(t), \widehat{f}_{q}(t)>0$ for $t>0$, and $f_{q}(t) / \widehat{f}_{q}(t)$ is nondecreasing according to inequality (9). Since $f_{q}(\rho(q)) / \widehat{f}_{q}(\rho(q))=1$, we find $f_{q}(t) \leq \widehat{f}_{q}(t)$ for all $0 \leq t \leq \rho(q)$, which implies Area $(C) \leq \operatorname{Area}(\widehat{C})$.

Proposition 6. (Gauss-Bonnet) For any cone $\widehat{C}$ over an immersed $C^{2}$ curve $\Gamma$ in $M^{n}$, with vertex $p \notin \Gamma$, and endowed with constant Gauss curvature $-\kappa^{2}$,

$$
2 \pi \Theta_{\widehat{C}}(p)+\kappa^{2} \operatorname{Area}(\widehat{C})=\int_{\Gamma} \widehat{k} d s
$$

where $\widehat{k}$ is the geodesic curvature of $\Gamma$ in $\widehat{C}$.

Proof. By the Gauss-Bonnet formula on $\widehat{C}_{\varepsilon}:=\widehat{C} \backslash B_{\varepsilon}(p)$,

$$
\begin{equation*}
\int_{\widehat{C}_{\varepsilon}} \widehat{K} d A+\int_{\Gamma} \widehat{k} d s+\int_{\widehat{C} \cap \partial B_{\varepsilon}(p)} \widehat{k} d s=2 \pi \chi\left(\widehat{C}_{\varepsilon}\right)=0 \tag{10}
\end{equation*}
$$

since $\widehat{C}_{\varepsilon}$ is an immersed annulus, implying the Euler number $\chi\left(\widehat{C}_{\varepsilon}\right)=0$.
The inward geodesic curvature $\widehat{k}$ of $\widehat{C} \cap \partial B_{\varepsilon}(p)$ equals $-\kappa \operatorname{coth} \kappa \varepsilon$. Thus,

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \int_{\widehat{C} \cap \partial B_{\varepsilon}(p)} \widehat{k} d s & =-\lim _{\varepsilon \rightarrow 0}(\kappa \operatorname{coth} \kappa \varepsilon) L\left(\widehat{C} \cap \partial B_{\varepsilon}(p)\right) \\
& =-2 \pi \Theta_{\widehat{C}}(p) .
\end{aligned}
$$

Since $\operatorname{Area}\left(\widehat{C}_{\varepsilon}\right) \rightarrow \operatorname{Area}(\widehat{C})$, the formula (10) now implies

$$
\begin{equation*}
-\kappa^{2} \operatorname{Area}(\widehat{C})+\int_{\Gamma} \widehat{k} d s-2 \pi \Theta_{\widehat{C}}(p)=0 \tag{11}
\end{equation*}
$$

Theorem 3. Let $\Sigma^{2}$ be a branched minimal surface (of arbitrary topological type) in an $n$-dimensional complete, simply connected Riemannian manifold $M$ whose sectional curvature is bounded above by a nonpositive constant $\widehat{K}=-\kappa^{2}$. Write $\Gamma=\partial \Sigma$, which we assume to be a $C^{2}$ embedding of the circle $S^{1}$. Then the density of $\Sigma$ at any point $p \notin \Gamma$ satisfies

$$
\begin{equation*}
2 \pi \Theta_{\Sigma}(p) \leq \mathcal{C}_{\text {tot }}(\Gamma)-\kappa^{2} \operatorname{Area}(p \circledast \Gamma) ; \tag{12}
\end{equation*}
$$

moreover, equality can hold only if $\Sigma$ is totally geodesic.
Proof. We sketch the proof only for an immersed minimal surface; see [CG] for branch points.

Consider any $p \in \Sigma \backslash \Gamma$, and let $C=p \nsim \Gamma$ be the geodesic cone over $\Gamma$ with vertex $p$. If $\Sigma$ is totally geodesic, then $\Sigma$ is embedded, since there are no compact totally geodesic surfaces in $M$. Otherwise, by Proposition 3 and Proposition 6, we have

$$
2 \pi \Theta_{\Sigma}(p)<2 \pi \Theta_{\widehat{C}}(p)=\int_{\Gamma} \widehat{k} d s-\kappa^{2} \operatorname{Area}(\widehat{C})
$$

Since $\widehat{k} \leq k \leq|\vec{k}|$ almost everywhere along $\Gamma$ by Proposition 4, and using the area comparison of Proposition 5, we find

$$
2 \pi \Theta_{\Sigma}(p)<\mathcal{C}_{\text {tot }}(\Gamma)-\kappa^{2} \operatorname{Area}(C)
$$

## 4. Towards Density Estimates for Flow by Mean Curvature

Motivated by the elliptic results of sections 2 and 3 above, we consider the question of density estimates for two-dimensional surfaces evolving by mean-curvature flow (1). This brief section is the result of ongoing discussions with Mu-Tao Wang and Mao-Pei Tsui.

Step (i) of the program carried out above, for example in Proposition 1, finds a sharp upper bound $\Theta_{\Sigma}(p) \leq \Theta_{C}(p)$ on the density of a minimal surface $\Sigma$ in $\mathbf{R}^{n}$ with boundary $\Gamma$, where $C$ is the cone $p \mathbb{\infty} \Gamma$ with vertex $p$. For the theory of minimal surfaces in $\mathbf{R}^{n}$, the cone has special properties which make it appropriate for such an estimate: (a) The cone is self-similar for the family of homotheties of $\mathbf{R}^{n}$ which preserve $p$; (b) the function $G(x)=\log \rho(x)$ is harmonic on $C$, even though $C$ itself is not minimal; finally, (c) the normal derivative $\nu_{C} \cdot \nabla \rho$ of $\rho(x)$ is the maximum at each point of $\Gamma$ among all surfaces with boundary $\Gamma$. Property (a) is very useful in constructing a "soliton" and investigating its properties. However, properties (b) and (c) are more directly relevant to deriving results for minimal surfaces.

When we turn to the problem of a surface $\Sigma_{t}$ in $\mathbf{R}^{n}$ evolving by its mean curvature:

$$
\begin{equation*}
\frac{\partial \Sigma_{t}}{\partial t}=H \vec{\nu}=: \vec{H} \tag{13}
\end{equation*}
$$

we observe that there is a strong analog of the monotonicity inequality of minimal surfaces, which has now become a basic tool $[\mathrm{H}]$. In $\mathbf{R}^{n} \times\left[0, t_{0}\right]$, let $G(x, t)$ be the fundamental solution for the backwards heat flow on $\mathbf{R}^{2}$ :

$$
G(x, t)=\frac{1}{2 \pi\left(t_{0}-t\right)} \exp \left[-\left|x-x_{0}\right|^{2} / 4\left(t_{0}-t\right)\right]
$$

Then

$$
\frac{d}{d t} \int_{\Sigma_{t}} G(x, t) d A=-\int_{\Sigma_{t}} G(x, t)\left|\vec{H}+\frac{\left(x-x_{0}\right)^{\perp}}{2\left(t_{0}-t\right)}\right|^{2} d A
$$

plus boundary terms, where $\left(x-x_{0}\right)^{\perp}$ is the normal component of the vector $x-x_{0}$. Equivalently,

$$
\frac{\partial G}{\partial t}+\Delta_{\Sigma_{t}} G(x, t)=2\langle\vec{H}, \nabla G\rangle-\frac{\nabla^{\perp} G}{G}
$$

This leads to an inequality, for which equality holds on the parabolically self-similar surface having the same evolving boundary $\Gamma_{t}$ as does $\Sigma_{t}$.

The backwards heat kernel $G(x, t)$ is closely related to the parabolic density of the evolving surface $\Sigma .:=\left\{\Sigma_{t}: 0 \leq t \leq t_{0}\right\}$ at the point $\left(x_{0}, t_{0}\right)$, where $x_{0} \in \Sigma_{t_{0}}$ :

$$
\Theta_{\Sigma .}\left(x_{0}, t_{0}\right)=\lim _{t \rightarrow t_{0}^{-}} \int_{\Sigma_{t}} G(x, t) d A
$$

If $\Theta_{\Sigma .}\left(x_{0}, t_{0}\right)$ is sufficiently close to 1 , then a varifold solution of mean-curvature flow (1) will be smooth (see e.g. [W]).

In space forms such as hyperbolic space, there are no similarity transformations other than isometries, so the self-similar "soliton" suggested by (a) does not exist. Nonetheless, analogues of (b) and (c) are possible and may well form the basis of a density estimate parallel to the result of [CG].

In the general case where the ambient manifold $M^{n}$ has variable sectional curvatures, methods for proving density bounds will become more involved. In particular, the reader will note from the model of section 3 above that the evolving comparison surfaces in the general variable-curvature case will need to be endowed with metrics other than the induced metric from $M$. Instead, one should aim to find evolving surfaces with artificial Riemannian metrics which are extremal in the sense of (b) over all ambient manifolds with a given upper bound on sectional curvatures.

## References

[AB] S. Alexander and R. L. Bishop, The Fáry-Milnor theorem in Hadamard manifolds, Proc. Amer. Math. Soc. 126 (1998), 3427-3436.
[A] H. W. Alt, Verzweigungspunkte von H-Flächen: I, Math. Z. 127 (1972), 333-362; II, Math. Ann. 201 (1973), 33-56.
[BH] F. Brickell and C. C. Hsiung, The total absolute curvature of closed curves in Riemannian manifolds, J. Differential Geom. 9 (1974), 177-193.
[C] J. Choe, The isoperimetric inequality for minimal surfaces in a Riemannian manifold, J. reine angewandte Mathematik 506 (1999), 205-214.
[CG] J. Choe and R. Gulliver, Embedded Minimal Surfaces and Total Curvature of Curves in a Manifold, to appear in Math Research Letters.
[D] J. Douglas, Solution of the problem of Plateau, Trans. Amer. Math. Soc. 33 (1931), 263-321.
[EWW] T. Ekholm, B. White, and D. Wienholtz, Embeddedness of minimal surfaces with total boundary curvature at most $4 \pi$, Annals of Mathematics 155 (2002), 109-234.
[F] M. I. Fáry, Sur la courbure totale d'une courbe gauche faisant un noeud, Bull. Soc. Math. France 77 (1949), 128-138.
[G] R. Gulliver, Regularity of minimizing surfaces of prescribed mean curvature, Annals of Math. 97 (1973), 275-305.
[H] G. Huisken, Asymptotic behaviour for singularities of the mean curvature flow, J. Differential Geom. 31, (1990), 285-299.
[M] J. Milnor, On the total curvature of knots, Annals of Math. 52 (1950), 248-257.
[Mo] C. B. Morrey, Jr., The problem of Plateau on a Riemannian manifold, Annals of Math. 49 (1948), 807-851.
[PR] Pitts, Jon T. and Rubinstein, J. Hyam, Equivariant minimax and minimal surfaces in geometric threemanifolds, Bull. Amer. Math. Soc. 19 (1988), 303-309.
[R] T. Radó, The problem of least area and the problem of Plateau, Math. Z. 32 (1930), 763-796.
[S] C. Schmitz, The theorem of Fáry-Milnor for Hadamard manifolds, Geom. Dedicata 71 (1998), 83-90.
[W] B. White, Stratification of minimal surfaces, mean curvature flows and harmonic maps, J. reine angew. Math. 488 (1997), 1-35.

Robert Gulliver
School of Mathematics
127 Vincent Hall
University of Minnesota
Minneapolis MN 55414, USA
gulliver@math.umn.edu


[^0]:    Date: 21 March, 2003.

