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ABSTRACT. Let
�

be a two-dimensional immersed minimal surface in a manifold ��� ,
having a curve � as boundary. We do not assume that

�
has minimum area. It will be

shown that the number of sheets of
�

passing through a point ����� (the density of
�

at � ) will be bounded by geometric measures of the complexity of � . However, such an
estimate must also depend on the geometry of the ambient manifold � .

Suppose that � is simply connected, and that the sectional curvatures of � are less
than or equal to a nonpositive constant 	�
 �

. Let ������ denote the minimum over �����
of the area of the geodesic cone over � with vertex � . If for some integer ����� the total
absolute curvature of � satisfies����� �! �#"%$'&)(+* �-,�
 � .�/���10
then the number of sheets through one point is at most �2	43 . In particular, if this inequality
holds with �65 (

, then
�

must be embedded.
An analogous result holds if � is a hemisphere.
We shall also discuss conjectures about analogous estimates for a surface which evolves

by its mean curvature vector.
The Euclidean case �7598 � was proved by Eckholm, White and Wienholtz [EWW].

This report is based on joint work with Jaigyoung Choe [CG].

1. INTRODUCTION

The elliptic problem of finding minimal surfaces in three-dimensional space has a com-

pelling geometric interest. The parametric theory pioneered by Radó and Douglas (see

[D] and [R]) may be used to find a minimal surface of the type of the disk bounded by

a given curve in :�; , which must be immersed (see [G] or [A]) but may well intersect

itself. Since self-intersections are unrealistic for such physical contexts as soap films or bi-

ological membranes, the question of whether a minimal surface is embedded carries great

significance.

In a recent paper, Ekholm, White, and Wienholtz [EWW] ingeniously proved the em-

beddedness of any minimal surface bounded by a curve < in :9= with total curvature >6?A@ .

Their result may be seen to follow from the following three observations. (i) The logarithm

of the distance function BDCFEDGIHKJLCFE�MONDG in :�= is a fundamental solution of the Laplacian

on a two-dimensional plane through N . Similarly, P�C#EDG.HRQ/SAT'BUC#EUG is harmonic on a coneN�V VW< over < with vertex N . By contrast, P�C#EUG is strictly subharmonic on a nonplanar

(branched) minimal surface X in :Y= . Further, at each point of <'M the outward normal de-

rivative of P�C#EUG in the cone N4V VZ< is greater than or equal to the outward normal derivative
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of P�CFEDG in the minimal surface X . As a consequence, the density of X at N is less than or

equal to the density of the cone. This part of their proof is intimately related to the well-

known monotonicity formula. (ii) By the Gauss-Bonnet theorem, � @ times the density at N
of the cone N4V V < , which is intrinsically flat, is at most the total curvature of < . (iii) Since an

immersed submanifold must have density at least two at a point of intersection, it follows

that a branched minimal surface whose boundary has total curvature ? @ or less must be

embedded. The theorem of Fáry and Milnor, that a curve with total curvature at most ?A@
is unknotted [F], [M], follows as a consequence of the existence of a branched minimal

surface of the type of the disk with boundary curve < (see [Mo] for the general case).

In contrast with the problem of minimal surfaces, the parabolic problem of flow by

mean curvature has little difficulty with self-intersections. In fact, if a hypersurface X��
evolves according to

(1)

� X ���� H����	�

if X� is embedded; and if the boundary of X � never touches the interior of X � ; then X �
will remain embedded for all positive time (assuming it exists). Here � denotes the mean

curvature of the evolving surface X�� , and �	 is its unit normal vector.

One should therefore view the result of [EWW] as a density estimate for a nonplanar

minimal surface X , depending only on the total curvature of its boundary curve < :

(2) ���'C NUG�� �
� @

����� �� � J����
Here, �� is the curvature vector of < . In this context, there are natural conjectures which sug-

gest themselves for the problem of mean-curvature flow. Roughly speaking, one expects

that the density of a surface evolving by mean curvature can be bounded by an average

density at time
� H�� and the total curvature of the boundary of X � at times between � and�

. See section 4 below.

The paper [CG] extends the result of [EWW] to minimal surfaces in an  -dimensional

Riemannian manifold ! with sectional curvature "$# bounded above by a nonpositive

constant %" , or with constant positive sectional curvature. The two conclusions (i), (ii)
above can be appropriately generalized for these purposes, and (iii) is unchanged. Thus, it

is proved that if < is a Jordan curve in ! = with total curvature

(3) &�')(*'%CF<WG�+ H ��� � �� � J�� >6?A@-,/.1032465 # C87 %" G39�:<;>= C N4V VZ<WG M
then every branched minimal surface bounded by < is embedded (see Theorem 2 and The-

orem 3.) The cone N�V VW< is defined as the union of geodesic segments from N to points

of < . Somewhat more precisely, in inequality (3), the infimum of area of cones N�V V < is

taken only over vertices N lying in the convex hull ?A@CBED�CO< G of < . Even more precisely, we

may restrict to points N which lie in the mean-convex hull of < , that is, the intersection of

smooth closed domains in ! = whose boundaries have non-strictly inward mean curvature.

The embedding theorem is a consequence of the following density estimate: for any

stationary, non-totally geodesic minimal surface XGF in ! = with boundary < , the density
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of X at N satisfies

(4) � @ � �'C NDG�� & ' ( ' CO< G , %" 9�:<;>=�C N4V VZ< G �
The same paper treats the case when ! has positive sectional curvature " # . With the

additional assumptions that " # � %" is a positive constant, and that X lies in a ball of! of radius @ � C ��� %" G , the corresponding density estimate (4) is proved, along with the

embeddedness of X if (3) holds. Note that in this case, the right-hand side of (3) involves

the supremum of areas of cones N�V V < over < . with vertex lying in the convex hull of < . All

these estimates are sharp.

Morrey proved that any closed curve in a manifold of bounded geometry is the boundary

of a branched minimal surface of the type of the disk [Mo]. As a consequence, the results

of [CG] give a new proof of the unknotting theorem for curves of total curvature at most ?A@
in a Hadamard-Cartan manifold [AB], [S]. In addition, a new proof is given of a slightly

weaker version of the unknotting theorem in hyperbolic space, with sectional curvatures� 7 � , for curves with total curvature at most ?A@ plus the area of the smallest cone �UV V <
among ��� < [BH]. Further, new unknotting results are proved, including one which is

a simultaneous generalization of the two just mentioned: if < is a curve of total curvature

at most ?A@A,	� F�
 CF< G in a simply-connected manifold with sectional curvatures bounded

above by 7�� F > � , then < is unknotted (see Theorem 3).

2. METHODS FOR DENSITY ESTIMATES: FLAT SPACE

We shall first sketch the proof of the density estimate in the simplest case: ! H : = .

This proof is analogous to the proof given in [EWW], although it differs somewhat in the

approach.

Let < be a smooth curve in :Y= which bounds a minimal surface X , and consider a

point N� X � We will compare X with the Euclidean cone � + H N4V VZ< � The proof of

the density estimate (4) at N , with %" H � , is broken up into the first two parts (i) (see

Proposition 1 below) and (ii) (see Proposition 2 below), as indicated in the Introduction.

Write BDCFEDG + H � E-7YN � for E��Y:�= , and P�C#EUG + H Q/SAT'BUC#EUGE�
Lemma 1. Let � F be a two-dimensional manifold immersed in :9= . Then except at N�M

��� P�CFB G�H �B F � � 7
� � � B � F�� , JABUC �� GB

where �� is the mean curvature vector of � �
Proof. Elementary calculations show that the Hessian in :9= :� F B F H ���UM
where � is the Euclidean metric tensor.
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The well-known trace formula states that

��� P H F�
�����

� F P�C�� � M�� � G , J P�C �� G M
where 	
� � M�� F
� is an orthonormal basis for the tangent plane to � �

This formula leads us by straightforward computations to the conclusion.

Note that the mean-curvature term ���������� vanishes in both cases � H X and � H � .

Since the gradient
� B in :�= has norm

�
, the gradient on X has norm > �

, implying� � P�CFB G�� � . Since
� B is tangent to the cone � , we find

��� P�CFB G4H�� .

In the next two propositions, we shall first assume that ����	 N � is immersed in ! . Re-

sults such as equation (5) and (6) below may be proved in the general case by approxima-

tion.

Proposition 1. (Density Comparison) Let < be a � F immersed closed curve in :�=�� ChooseN ��:�=�� < � If X F is a branched minimal surface in :Y= with boundary
� X H <4M and � is

the cone N4V VZ< over N , then their densities at N satisfy the inequality

� � C NUG�� � � C NDG M
unless X lies in a plane.

Proof. As we have just seen,
� � P�� � and

��� P � � � For small �! ��M write �#" + H���%$ " C NDG , and similarly X " . Then the boundary of X " is <'& C1X!( � $ " C NUG G � Let 	 � ( 	 � ,

respectively) be the outward unit normal vector tangent to X " at
� X " (to � " at

� � " , resp.).

Then

� > �
�*) � � P�C#B G J,+RH �

- �*) 	 �'.
� P J�� H �

�*/ -10 ) � 4 �
	 � . � B� J���, � � 	 � . � BB J����

As �32 ��M along the small boundary component X4( � $5"AC NDG M 	 � . � B�2 7 � uniformly,

and 6 C1X7( � $8" C NDG G� @9� 2 � �'C NDGE�
Along < , 	 �'. � B)> 	 � . � B . Hence as ��2/� , we find

� @ � � C NUG > � � 	 � . � BB J����
Similarly, along �4( � $ " C NDG , we have 	 � � 7 � B � After applying the divergence theorem

to the vector field
� � P�C#B G on �#" , we find

(5) � @ � � C NDG'H � � 	 � . � BB J����
This implies � �'C NDG >�� � C NUG . If equality holds, then

� � P � ��M which requires
� � � B � ��

according to Lemma 1. This can only happen when the minimal surface X is flat.
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Proposition 2. (Gauss-Bonnet) Let < be a � F immersed closed curve in :Y=�� ChooseN � :�=�� < � If � is the cone N4V VZ< over N , then its density at N is given by

(6) � @ � � C NUG'H 7 � � �� . 	 � J����
Proof. Recall that � is intrinsically flat: " � � � . Also, its inner boundary component� ( � $ " C NDG has curvature vector �� H �" 	 � . Finally, � " is a topological annulus, so
� C � " G'H�� . Therefore, by the Gauss-Bonnet Theorem,

��H � � ) "
� J�+ H � � / -10 ) � 4 � �

� . 	 � J�� , � � �� . 	 � J�� H
6 C � ( � $ " C NUG G� , � � �� . 	 � J����

But as � 2 ��M � � � / -�0 ) � 4 � �" 2 � @ � � C NDG �
Theorem 1. Let X F be a minimal surface in :Y= with boundary curve < . For any pointN � :�= , � @ � � C NDG�� &�' ( '%CO< G
unless X lies in a plane.

Proof. Follows immediately from Proposition 1 and Proposition 2, since at each point of<4M�7 �� . 	 � > � �� � �
3. METHODS FOR DENSITY ESTIMATES: CURVED SPACE

If the ambient manifold ! has constant sectional curvature " # � %" , then results

analogous to Lemma 1, Proposition 1 and Proposition 2 above may be proved in a similar

fashion to the Euclidean case %" H � of Section 2. More precisely, when %"  � , we

replace the Green’s function P�C#EUG H Q�S T'BDCFEDG of : F with the Green’s function of the� -sphere of constant Gauss curvature %" :

P�C#EUG4H Q/SAT��<= 0 �� BDCFEDG � %" 

or, in the case %" H + 7�� F ��� , with the Green’s function of the � -dimensional hyperbolic

plane of constant Gauss curvature %" :

P�CFEDG4H Q/SAT�� = 0�� �� � BUC#EDG �
In this more general case, the conclusion of Proposition 1 is unchanged, and the conclusion

of Proposition 2 becomes

� @ � � C NDG4H 7 ��� �� . 	 � J���, %" 9 :*; = C N4V VZ< G �
The density estimate is a consequence:

Theorem 2. Suppose ! = is a complete, simply connected Riemannian manifold with con-

stant sectional curvatures " # � %"$� Let X F be a minimal surface in ! = with boundary

curve < . In case %"  � , we assume that X & < lies in an open hemisphere of the sphere! = . Then for any point N ��X ,� @ � �'C NDG�� & ' ( ' CO< G , %" 9�:<;>=�C N4V VZ< G �
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unless X is totally geodesic.

Remark 1. In the case of constant positive sectional curvatures, it is not completely nec-

essary to require that X & < lie in an open hemisphere. The proof continues to hold if,

instead, it is assumed that the mean-convex hull of < in !K= is compact and does not con-

tain two antipodal points. It is not difficult to construct such examples which do not lie in

a hemisphere, using, for example, certain unstable minimal hypersurfaces constructed in

[PR].

On the other hand, when ! has variable sectional curvature, it should be observed

that the cone N�V VW< may lie in a region of ! whose geometry is unrelated to the geometry of! near X . Therefore, it is essential to consider a second Riemannian metric C � M %��G on the

geodesic cone C � M ��G , where � is the metric on � induced from ! . We shall also write %�
for the singular Riemannian manifold C � M %� G . We choose the metric % � of %� characterized

by the properties that the radial unit-speed geodesics which generate � H N�V VW< remain

unit-speed geodesics in %� ; that the curve < has the same arc length in either � or %� (or

in ! ); that each radial geodesic meets < in the same angle measured in � or in %� ; and

that %� has constant Gauss curvature %" away from the singular point N . This metric was

introduced by Choe in his study of isoperimetric inequalities on minimal surfaces ([C].)

In the rest of this section, we shall treat explicitly only the case %" H 7�� F � � � Some of

the corresponding formulas for � H � have already been given in section 2 above; others

follow from limits of standard functions as � 2 � . For the case %"  � , see [CG].

Lemma 2. Let � F be a two-dimensional manifold immersed in a complete, simply con-

nected Riemannian manifold ! whose sectional curvature is bounded above by 7�� FAM �' � � Then except at N�M
� � P�C#B G�� � � F � S�� � � B

�*. 0�� F ��B � � 7
� � � B � F�� , � JABUC �� G

�*. 0 ����B �
Proof. The Hessian comparison theorem shows that� F B � � � S � ����BUC � 7 � B�� � B G
where BUC#EUG is the distance from N to E in ! . We apply the trace theorem as in the proof of

Lemma 1.

As a consequence of Lemma 2, we see that P�C#EDG H Q/SAT��<= 0 � �F � BUC#EDG is subharmonic

on the minimal surface X and harmonic on the hyperbolic cone %� .

In the next four propositions, as in section 2 above, we shall first assume that ���,	 N � is

immersed in ! . The key results obtained in the proofs of the propositions may be proved

in the general case by approximation.

Proposition 3. (Density Comparison) Let X F be a branched minimal surface in an  -

dimensional simply connected Riemannian manifold ! with sectional curvature > 7�� F .
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If %� is the hyperbolic cone defined above, then � � C NDGY> ���� C NDG , with strict inequality

unless X is totally geodesic with constant Gauss curvature 7�� F .
Proof. As we have just shown,

� � P�C#EUG�� � and
� �� P�C#EUG � � �

Then with the notation of Proposition 1,

�2> �
�*) � � P J�+ H �

- ��) 	 � .
� P J���H �

� / -10 ) � 4 � �
	 � . � B
�*. 0 ��� � J���, � � � 	 � .

� B
� .10���� B J����

Note that

�
6 C X!( � $ " C NDG G� @ �*. 0���� � 2 � � C NUGE�

Also, it should be observed that	 �'. � B)> 	 � . � B =AQ�S�0�T�< �
Thus, we find that the inequality above implies

(7) � @ � �'C NUG > ��� � 	 � .
� B

� .10���� B J����
Note here that 	 � , considered as a tangent vector to � , is also the outward unit normal

vector in the metric %� . Along the intrinsic distance sphere
� %$ " C NDG � %�2M 7 � B is the

outward unit normal vector. Hence since P is harmonic on %�2M as � 2/� ,

��H �
�� )
� �� P�CFEDG J,+ 2 7 � @ � �� C NUG , � � � 	 � .

� B
� .10���� B J����

Therefore, by inequality (7),

� @ � �� C NUG'H ��� � 	 � .
� B

� .10���� B J�� � � @ � � C NDG M
which is the desired estimate.

If equality holds, then
� � P � ��M which requires

� � � B � � �
according to Lemma 2.

But this means that X is a cone over N , as well as being minimal, which can only occur whenX is totally geodesic. Moreover,
� � P � � now implies that

� � B � � � S � � � B , which,

along with " � >�" # > 7�� F , implies that X has constant Gauss curvature " � � 7�� F .
Proposition 4. (Geodesic Curvature Comparison) Let < be a � F curve in ! = , a manifold

with sectional curvatures > 7�� F , and let � be the cone N�V VZ< . If %� is the cone � with

the constant curvature metric %� , as defined above, then
� C � G � % � C � G for almost all � � < ,

where
�

and % � denote the inward geodesic curvatures of < in � and %� , respectively.

Proof. The proof follows from comparison of the Jacobi equations along a radial geodesic
� through N :

(8) ��� � C � G , " � C � C � G G�� C � G4H�� = 0	� %�
� � C � G , %" %� C � G4H � M
with initial conditions � C)� G�H � H %�WC)� G and � � C)� G H�� �  � , %� � C)� G H % � �  � , where" � H " # > 7�� F)H %" from the Gauss equations for � as a submanifold of ! . The
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geodesic curvature of � ( � $ ��� C NUG (as a curve in � ) is � � CFB�� G � � C#B�� G , and similarly the

geodesic curvature of %� ( � $ ��� C NUG is %� � C#B�� G � %�WCFB�� G . The comparison theorem shows that

(9) �
� � ��� %�
� � %� �
Since � and %� have the same metric at points of < , one may show that� 7 % � H C � �� 7 %� �%� G � S ��� � � M

where at each point of < , � is the angle in either metric between 	 � H 	 �� and
� B�H %� B .

(For details see [CG], Proposition 4.) Thus
� � % � �

Proposition 5. (Area Comparison) Let < be a � F curve in ! = , and let � H N�V VW< . If%� is the cone � with the constant curvature metric % � , as defined above, then the areas9 :*; =�C � G > 9�:<;>=LC6%� G .
Proof. We continue to use the notation � C � G M %�WC � G M�� C � G as in the proof of Proposition 4,

with the following refinement. Along the radial unit-speed geodesic ��� +�� ��M BDC � G	� 2 � HN�V VW< , where ��� C)� G'H N�M ��� CFBDC � G G4H � �9<'M which is a geodesic in both metrics � and % � , let

� C � G�H � � C � G or %� C � G H %� � C � G denote solutions of the Jacobi equation (8). We may choose

the normalizations � �� C)� G9H ��� C � G and %� �� C � G H % ��� C � G so that � � C#BUC � G G H � S���� C � G�H%� � C#BUC � G G as well as � � C � G'H�� H %� � C)� G , since " � and %" are nonpositive. Then

9�:<;>=LC � G'H � � � ��� � �� � � C � G�J � J�� C � G M
and similarly for 9 :*; =�C %��G � But � � C � G M %� � C � G  � for

�  ��M and � � C � G � %� � C � G is nondecreas-

ing according to inequality (9). Since � � C#BUC � G G � %� � C#BUC � G G H � M we find � � C � G�> %� � C � G for

all � > � > BUC � G M which implies 9�:<;>= C � G > 9�:<;>=�C�%��G �
Proposition 6. (Gauss-Bonnet) For any cone %� over an immersed � F curve < in ! =DM
with vertex N�
� <'M and endowed with constant Gauss curvature 7�� F M

� @ � �� C NDG , � F 9�:<;>=�C %��G'H � � % � J��AM
where % � is the geodesic curvature of < in %� .

Proof. By the Gauss-Bonnet formula on %� " + H %��� $ " C NUG M
(10)

�
�� ) %" J,+ , � � % � J��, �

�� / -�0 ) � 4 � %
� J�� H�� @ � C %� " G'H���M

since %�#" is an immersed annulus, implying the Euler number � C�%� " G'H�� �
The inward geodesic curvature % � of %� ( � $ " C NUG equals 7�� � S � � � � . Thus,

Q .�"���� � �� / -�0 ) � 4 � %
� J�� H 7 Q1.��"���� C � � S � ��� �AG 6 C %� ( � $8" C NDG G

H 7 � @ � �� C NDG �
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Since 9�:<;>= C %�#" G 2 9�:<;>=�C %� G M the formula (10) now implies

(11) 7�� F 9�:<;>= C %� G , � � % � J���7 � @ � �� C NUG'H�� �
Theorem 3. Let X F be a branched minimal surface (of arbitrary topological type) in an -dimensional complete, simply connected Riemannian manifold ! whose sectional cur-

vature is bounded above by a nonpositive constant %" H 7�� F . Write < H � X�M which we

assume to be a � F embedding of the circle � � � Then the density of X at any point N 
�-<
satisfies

(12) � @ � �'C NUG > & ')(*' CF<WG 7 � F 9�:<;>= C N4V VZ<WG 

moreover, equality can hold only if X is totally geodesic.

Proof. We sketch the proof only for an immersed minimal surface; see [CG] for branch

points.

Consider any N � X � < , and let � H N4V V < be the geodesic cone over < with vertex N .

If X is totally geodesic, then X is embedded, since there are no compact totally geodesic

surfaces in ! . Otherwise, by Proposition 3 and Proposition 6, we have

� @ � � C NUG�� � @ ���� C NDG�H � � % � J���7 � F 9�:<;>=�C %� GE�
Since % � > � > � �� � almost everywhere along < by Proposition 4, and using the area

comparison of Proposition 5, we find

� @ � �4C NDG�� & ')(*' CO< G 7 � F 9�:<;>=�C � GE�
4. TOWARDS DENSITY ESTIMATES FOR FLOW BY MEAN CURVATURE

Motivated by the elliptic results of sections 2 and 3 above, we consider the question of

density estimates for two-dimensional surfaces evolving by mean-curvature flow (1). This

brief section is the result of ongoing discussions with Mu-Tao Wang and Mao-Pei Tsui.

Step (i) of the program carried out above, for example in Proposition 1, finds a sharp

upper bound � � C NUG > � � C NDG on the density of a minimal surface X in :9= with boundary< , where � is the cone N�V VZ< with vertex N . For the theory of minimal surfaces in : = ,

the cone has special properties which make it appropriate for such an estimate: (a) The

cone is self-similar for the family of homotheties of :9= which preserve N ; (b) the functionP�CFEDG H7Q�S T'BDCFEDG is harmonic on � , even though � itself is not minimal; finally, (c) the

normal derivative 	 � . � B of BUC#EUG is the maximum at each point of < among all surfaces

with boundary < . Property (a) is very useful in constructing a “soliton” and investigating

its properties. However, properties (b) and (c) are more directly relevant to deriving results

for minimal surfaces.
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When we turn to the problem of a surface X � in :�= evolving by its mean curvature:

(13)

� X���� H����	 H + ��-M
we observe that there is a strong analog of the monotonicity inequality of minimal surfaces,

which has now become a basic tool [H]. In :Y= V � ��M � � � , let P�C#E�M � G be the fundamental

solution for the backwards heat flow on : F :
P�CFE�M � G�H �

� @'C � �G7 � G ;���� � 7
� E 7 E � � F � ?LC � � 7 � G�� �

Then JJ �
�
��� P�C#E M � G J,+RH 7 � �	� P�CFE�M � G 



 �� , C#E-7 E � G����C � �G7 � G






F J,+

plus boundary terms, where C#E 7 E � G�� is the normal component of the vector E 7 E � .
Equivalently, � P� � ,� ��� P�C#E M � G H���� ��-M � P�� 7

�
�ZPP �

This leads to an inequality, for which equality holds on the parabolically self-similar sur-

face having the same evolving boundary < � as does X � .
The backwards heat kernel P�C#E M � G is closely related to the parabolic density of the

evolving surface X���+ H 	 X � + � > � > � � � at the point C#E�� M � ��G , where E � ��X � � :� ��� CFE � M � ��G4H Q1.��� � ����
�
� � P�C#E M � G J�+ �

If � ��� C#E�� M � � G is sufficiently close to
�
, then a varifold solution of mean-curvature flow (1)

will be smooth (see e.g. [W]).

In space forms such as hyperbolic space, there are no similarity transformations other

than isometries, so the self-similar “soliton” suggested by (a) does not exist. Nonetheless,

analogues of (b) and (c) are possible and may well form the basis of a density estimate

parallel to the result of [CG].

In the general case where the ambient manifold !K= has variable sectional curvatures,

methods for proving density bounds will become more involved. In particular, the reader

will note from the model of section 3 above that the evolving comparison surfaces in the

general variable-curvature case will need to be endowed with metrics other than the in-

duced metric from ! . Instead, one should aim to find evolving surfaces with artificial

Riemannian metrics which are extremal in the sense of (b) over all ambient manifolds with

a given upper bound on sectional curvatures.
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