SIXTH PROBLEM SET Math 5615H: Honors Analysis

Due W 18 October, 2017.
12 points each; total 60 points.

1. If $a_{1}=1$, and

$$
a_{n+1}=\frac{1}{1+a_{n}} \text { for } n=1,2, \ldots,
$$

prove that the sequence $\left\{a_{n}\right\}$ converges and find its limit. You can use without proof the fact that

$$
\lim _{n \rightarrow \infty} q^{n}=0 \text { if }|q|<1
$$

2. Let X be the metric space of bounded sequences of real numbers: $x=\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ with the distance

$$
d(x, y):=\sup _{n}\left|x_{n}-y_{n}\right| \text { for } x=\left\{x_{n}\right\}, y=\left\{y_{n}\right\}
$$

Let c_{n} be a sequence of positive numbers. Show that the set

$$
K:=\left\{x=\left\{x_{n}\right\} \in X: \quad\left|x_{n}\right| \leq c_{n} \text { for all } n=1,2, \ldots\right\}
$$

is compact in X if and only if $c_{n} \rightarrow 0$ as $n \rightarrow \infty$. (You may assume, but do not have to show, that X is a metric space.)
3. Let a, b be arbitrary real numbers, set $x_{1}=a$ and $x_{2}=b$ and let

$$
x_{n}:=\frac{1}{2}\left(x_{n-2}+x_{n-1}\right) \text { for } n=3,4,5, \ldots
$$

Show that the sequence $\left\{x_{n}\right\}$ converges, and find its limit.
4. Exercise 30 on p. 46 of Rudin.
5. Exercise 8 on p. 78 of Rudin.

