Math 5615H: Introduction to Analysis I. Fall 2017 Homework \#4, due Weds. October 4. 50 points.

$\# 1$. Let f be a mapping of A to B. Show that for each $B_{1} \subseteq B$ and $B_{2} \subseteq B$, their inverse images satisfy the properties
(i) $f^{-1}\left(B_{1} \cup B_{2}\right)=f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right), \quad$ (ii) $\quad f^{-1}\left(B_{1} \cap B_{2}\right)=f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$.
\#2. Let f be a mapping of A to B. Verify whether or not the images of subsets $A_{1} \subseteq A$ and $A_{2} \subseteq A$ in general satisfy the properties
(i) $f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right) \cup f\left(A_{2}\right)$,
(ii) $\quad f\left(A_{1} \cap A_{2}\right)=f\left(A_{1}\right) \cap f\left(A_{2}\right)$.
\#3. The set difference of A and B by definition is $A \backslash B:=\{x \in A: x \notin$ $B\}$. Simplify the expressions
(a) $A \backslash(B \backslash A)$,
(b) $A \backslash(A \backslash B)$,
(c) $A \cap(B \backslash A)$.
\#4. (a) Suppose that $E \subset \mathbf{R}^{\mathbf{k}}$ is a bounded set in $\mathbf{R}^{\mathbf{k}}$, and that $\varepsilon>0$. Show that there is a finite set of points $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in \bar{E} so that for any point $x \in E$ there is $1 \leq i \leq n$ so that $\left|x-p_{i}\right|<\varepsilon$. (b) For the set $E=$ $(-2,2) \times(-2,2) \times(-2,2) \subset \mathbf{R}^{3}$, find an explicit choice of $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ which works for any $\varepsilon>\frac{1}{\sqrt{3}}$.
\#5. Show that the unit interval $I_{1}:=\{x: 0 \leq x \leq 1\}$ is equivalent to (is in one-to-one correspondence to) the unit square $I_{2}:=\left\{x=\left(x_{1}, x_{2}\right): 0 \leq x_{1}, x_{2} \leq\right.$ 1\}. Hint. Use decimal representation of $x \in I_{1}$.

