THIRD PROBLEM SET Math 5615H: Honors Analysis

Due W 27 September, 2017. 10 points each; total 50 points.

1. Let $A := \{a_1, a_2, \dots\}$ be a set of real numbers defined as follows:

$$a_1 = 1$$
, and $a_{k+1} = 1 + \sqrt{a_k}$ for $k = 1, 2, \dots$

Find $\sup A$.

- 2. Let z and w be complex numbers such that both the sum z + w and the product zw are real. Show that $w = \overline{z}$, i.e. w is the conjugate of z.
- 3. Let \vec{x} and \vec{y} be vectors in \mathbb{R}^k , $\vec{x} \neq \vec{0}$. Show that \vec{y} is **uniquely** represented in the form

$$\vec{y} = \vec{a} + \vec{b}$$
, where $\vec{a}, \vec{b} \in \mathbb{R}^k$ satisfy $\vec{a} = \alpha \vec{x}$ for some real α , and $\vec{b} \cdot \vec{x} = 0$

Also, verify this fact for $\vec{x} = (1, 1, 1)$ and $\vec{y} = (1, 2, 3)$ in \mathbb{R}^3 .

4. Let A be a nonempty set in \mathbb{R}^k . For $\vec{x} \in \mathbb{R}^k$, define

$$d(\vec{x}, A) := \inf\{ |\vec{x} - \vec{a}| : \vec{a} \in A \}.$$

Show that

$$|d(\vec{x}, A) - d(\vec{y}, A)| \le |\vec{x} - \vec{y}| \text{ for all } \vec{x}, \vec{y} \in \mathbb{R}^k.$$

5. Exercise 8 on p.43 of Rudin.