THIRD PROBLEM SET Math 5615H: Honors Analysis

Due W 27 September, 2017.
10 points each; total 50 points.

1. Let $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ be a set of real numbers defined as follows:

$$
a_{1}=1, \quad \text { and } a_{k+1}=1+\sqrt{a_{k}} \text { for } k=1,2, \ldots
$$

Find $\sup A$.
2. Let z and w be complex numbers such that both the sum $z+w$ and the product $z w$ are real. Show that $w=\bar{z}$, i.e. w is the conjugate of z.
3. Let \vec{x} and \vec{y} be vectors in $\mathbb{R}^{k}, \vec{x} \neq \overrightarrow{0}$. Show that \vec{y} is uniquely represented in the form

$$
\vec{y}=\vec{a}+\vec{b}, \text { where } \vec{a}, \vec{b} \in \mathbb{R}^{k} \text { satisfy } \vec{a}=\alpha \vec{x} \text { for some real } \alpha \text {, and } \vec{b} \cdot \vec{x}=0 \text {. }
$$

Also, verify this fact for $\vec{x}=(1,1,1)$ and $\vec{y}=(1,2,3)$ in \mathbb{R}^{3}.
4. Let A be a nonempty set in \mathbb{R}^{k}. For $\vec{x} \in \mathbb{R}^{k}$, define

$$
d(\vec{x}, A):=\inf \{|\vec{x}-\vec{a}|: \vec{a} \in A\}
$$

Show that

$$
|d(\vec{x}, A)-d(\vec{y}, A)| \leq|\vec{x}-\vec{y}| \text { for all } \vec{x}, \vec{y} \in \mathbb{R}^{k} .
$$

5. Exercise 8 on p. 43 of Rudin.
