SECOND PROBLEM SET Math 5615H: Honors Analysis

Due W 20 September, 2017.
10 points each; total 50 points.

1. Let F be a field. Show that there exist at most two solutions of $x^{2}=1$. True/false: Is it possible that there exists only one solution?
2. Given any two rational numbers p and q, with $p<q$, show that there is an irrational number x with $p<x<q$.
3. (a). Represent the polynomial $z^{4}+4$ in the form

$$
z^{4}+4=\left(z-c_{1}\right)\left(z-c_{2}\right)\left(z-c_{3}\right)\left(z-c_{4}\right)
$$

for some complex constants $c_{1}, c_{2}, c_{3}, c_{4}$.
(b). Write $z^{4}+4$ as the product of two quadratic polynomials with real coefficients.
4. Problem \#6 on p. 22.
5. Problem \#10 on p. 22.

