This is a review text file submitted electronically to MR.
Reviewer: George U. Brauer
Reviewer number: 003307

Address:

Math Dept.
University of Minnesota
Minneapolis, MN 55455
minette@math.umn.edu
Author: Sahoo, A.K.
Short title: Absolute $N_{q_{\alpha}}$-summability of the series conjugate to a Fourier series.
MR Number: 1663743
Primary classification:
Secondary classification(s): 42A28, 40F05, 40G05

Review text:

For positive values of α let $q_{\alpha}(t)$ be a non-negative monotonic increasing function on $0 \leq$ $t \leq 1$, satisfying certain other conditions and let $Q(t)=\int_{0}^{1} q_{\alpha}(t) d t$ A series $\sum u_{n}$ is said to be $N_{q_{\alpha}}$ summable to ℓ if $\lim _{w \rightarrow \infty} \sum_{n \leq w} u_{n}$ $Q(1-n / w)=\ell$; the series is said to be $\left|N_{q_{\alpha}}\right|$ summable if for some positive constant A, $\int_{A}^{\infty}\left|\sum_{n \in w} n u_{n} q_{\alpha}(n / w)\right| d w / w^{2}$ is finite. The $N_{q_{\alpha}}$ method is a generalization of a method introduced by F. Nevanlinna Uber die Summation del Fourier Reihen und integrale overskit av Finska Vetensk 6A No. 3 (1921-22) 14. For a Fourier series $f(t)=\sum_{n=0}^{\infty} a_{n} \cos n t+$ $b_{n} \sin x t$ we denote by $\psi(t)$ the quantity $(f(x+t)-f(x-t)) / 2$ and by $\Psi_{\alpha}(t)$ the quantity $\int_{0}^{t}(t-u)^{\alpha-1} \Psi(u) d u / f(\alpha)$. It is shown that if $\int_{0}^{\pi}\left|d \Psi_{\alpha}(t)\right| / t^{\alpha}$ is finite and $\Psi(0+)=0$, then the conjugate Fourier series to $f, \sum b_{n} \cos n t-a_{n} \sin n t$ is $\left|N_{q_{\alpha}}\right|$ summable at $t=x$ for $\alpha>0$. By taking $q_{\alpha}(t)=\beta(1-t)^{\beta-1}, 0<\alpha<\beta<[\alpha]+1$, where the symbol $[\alpha]$ denotes the greatest integer not exceeding α, it is obtained as a corollary that under the stated conditions, the conjugate series of $f(t)$ is absolutely summable at $t=x$ by the Cesàro method $|C, B|$ for $\beta>\alpha>0$.

