This is a review text file submitted electronically to MR.

Reviewer: George U. Brauer

Reviewer number: 003307

Address:

Math Dept. University of Minnesota Minneapolis, MN 55455 minette@math.umn.edu

Author: Sahoo, A.K.

Short title: Absolute $N_{q_{\alpha}}$ -summability of the series conjugate to a Fourier series.

MR Number: 1 663 743

Primary classification:

Secondary classification(s): 42A28, 40F05, 40G05

Review text:

For positive values of α let $q_{\alpha}(t)$ be a non-negative monotonic increasing function on $0 \leq t \leq 1$, satisfying certain other conditions and let $Q(t) = \int_0^1 q_{\alpha}(t)dt$ A series $\sum u_n$ is said to be $N_{q_{\alpha}}$ summable to ℓ if $\lim_{w\to\infty} \sum_{n\leq w} u_n$

 $Q(1 - n/w) = \ell$; the series is said to be $|N_{q_{\alpha}}|$ summable if for some positive constant A, $\int_{A}^{\infty} |\sum_{n \in w} nu_n q_{\alpha}(n/w)| dw/w^2$ is finite. The $N_{q_{\alpha}}$ method is a generalization of a method introduced by F. Nevanlinna Uber die Summation del Fourier Reihen und integrale overskit av Finska Vetensk 6A No. 3 (1921-22) 14. For a Fourier series $f(t) = \sum_{n=0}^{\infty} a_n \cos nt + b_n \sin xt$ we denote by $\psi(t)$ the quantity (f(x+t) - f(x-t))/2 and by $\Psi_{\alpha}(t)$ the quantity $\int_0^t (t-u)^{\alpha-1} \Psi(u) du/f(\alpha)$. It is shown that if $\int_0^{\pi} |d\Psi_{\alpha}(t)|/t^{\alpha}$ is finite and $\Psi(0+) = 0$, then the conjugate Fourier series to f, $\sum b_n \cos nt - a_n \sin nt$ is $|N_{q_{\alpha}}|$ summable at t = x for $\alpha > 0$. By taking $q_{\alpha}(t) = \beta(1-t)^{\beta-1}$, $0 < \alpha < \beta < [\alpha] + 1$, where the symbol $[\alpha]$ denotes the greatest integer not exceeding α , it is obtained as a corollary that under the stated conditions, the conjugate series of f(t) is absolutely summable at t = x by the Cesàro method |C, B| for $\beta > \alpha > 0$.