Let a be a function in $L^{\infty}(\Gamma)$, where $\Gamma=\Gamma(t)$ is a Carleson curve, that is a curve such that $\sup _{t \in \Gamma} \sup _{\epsilon>0}|\Gamma(t, \epsilon)| \epsilon$ is finite, where the symbol $|\Gamma(t, \epsilon)|$ denotes the measure of the part $\Gamma(t, \epsilon)$ of the curve Γ in the disc $|\tau-t|<\epsilon$. Let $w(\tau)$ denote a Muckenhaupt weight defined on Γ; the class of Muckenhaupt weights is denoted by $A_{p}(\Gamma)$. The complex function f is said to be in $L^{p}(\Gamma, w)$ if $\left(\int_{\Gamma}|f(\tau)|^{p} w(\tau) d \tau\right)^{1 / p}=\|f\|_{p, w}$ is finite. For f in the Hardy space $H^{p}(\Gamma, w)$ the Toeplitz operator $T(a)$ is the projection of the function of a onto the Hardy space $H^{p}(\Gamma, w)$. The essential spectrum of an operator T is the set of complex numbers λ such that $T-\lambda I$ is not Fredholm; I is the identity operator. The essential spectrum of the Toeplitz operator $T(a)$ is described in terms of indicator functions. The function $\left.V^{(} 0\right)_{t} \psi(\mathcal{E})$ is defined by the equations $V_{t}^{(0)} \psi(\mathcal{E})=$ $\lim _{R \rightarrow \infty} \exp \exp \int_{\Gamma(t, \mathcal{E} R)} \log \psi(r)|d r| / \Gamma(t, \mathcal{E} \mathcal{R}) / \exp \int_{\Gamma(t, R)} \log \psi(r)|d r| /|\Gamma(\mathcal{E} R)|$ for $0<\mathcal{E}<1, V_{t}^{(0)} \psi(\mathcal{E})=\lim _{R \rightarrow 0} \sup \exp \int_{\Gamma(t, R)} \log \psi(r)|d r| /|\Gamma(t, r)| /$ $\exp \left(\int_{\Gamma\left(t \mathcal{E}^{-1} R\right)} \log \psi(r)|d r| /\left|\Gamma\left(t, \mathcal{E}^{-1} R\right)\right|\right.$ for $\mathcal{E}>1$. The indicator function $\alpha_{t}(x)$ is defined by the formula $\alpha_{t}(x)=\lim \sup _{\mathcal{E} \rightarrow 0} V_{t}^{0} \exp (-x \arg (\tau-t) w(\mathcal{E}) / \log \mathcal{E}$ and $\beta_{t}(x)$ is the limit superior of the same function as \mathcal{E} tends to infinity. It is shown that if a is piecewise continuous on Γ, then the essential spectrum of $T(a)$ consists of the essential range $\mathcal{R}(a)$ and the leaves $\cup_{t \in \Lambda_{a}} \mathcal{L}\left(a(t-0), a(t+0), p, \alpha_{t}, \beta_{t}\right)$ where Λ_{a} denotes the set of points of discontinuity of the function a on Γ and, for points, z, w, the symbol $\mathcal{L}\left(z, w, p, \alpha_{t}, \beta_{t}\right)$ denotes the leaf about z and w determined by p, α_{t}, β_{t} that is the set of points $\{w(\exp 2 \pi \gamma-z) /(\exp 2 \pi \gamma-1)\}$ as γ ranges over the strip $1 / p+\alpha_{t}(x) \leq y \leq 1 / p+\beta \in(x) \gamma=x+y$. If λ is not in the essential spectrum of $T(a)$, then the index of $T(a)-\lambda I$ is the winding number of the curve $\mathcal{R}(a) \cup_{t \in \Gamma_{\alpha}} \mathcal{L}\left(a(t-0)\right.$, $a(t+0)$, $\left.p,\left(\alpha_{t}+\beta_{t}\right) / 2,\left(\alpha_{t}+\beta_{t}\right) / 2\right)$ about the point λ. The indicator set N_{t} of Γ, p, w at the point t is the set of complex numbers γ such that $|\tau-t|^{x} \exp (-y \arg (\tau-t)) w$ is a Muckenhaupt weight, where $\gamma=x+i y$. It is shown that N_{t} is the set of complex numbers γ such that $-1 / p<x+\alpha_{t}(y) \leq x+\beta_{t} y<p /(p-1)$. A plane set N is said to be narrow if it is contained in a set $\pi=S_{1} \cap S_{2}$ where each set S_{i} is a strip of width at most 1 and $\inf _{x+i y \in \pi} y=\inf _{x+i y \in N} y, \sup _{x+i y \in \pi} y=\sup _{x+i y \in N} y$. It is shown that open convex narrow sets containing the origin are precisely the sets which coincide the indicator set N_{t} for some Carleson curve Γ and some weight in $A_{p}(\Gamma)$ for some $t \in \Gamma$.

