Reviewer: G.U. Brauer

Reviewer Number: 003307

Address:

School of Mathematics University of Minnesota 206 Church St. SE Minneapolis, MN 55455 e-mail: brauer@math.umn.edu

Authors: V. Gregoreados, N. Papanastassou

Short Title: The notion of exhaustiveness and Ascoli-type theorems

MR Number: 2419370

Primary classification: 26A21 Secondary classification: 26A03

Let X be a topological space and let (Y, ρ) be a metric space with metric ρ . A net $\mathcal{F} = \{f_i\}_{i=\mathcal{I}}$ from X to Y is said to be α -convergent to the function f from Y to y if for all $\epsilon > 0$ there exists an $i_0 \in \mathcal{J}$ and κ_o in K such that for all i in \mathcal{J} , $i > t_0$ and κ in $K \cap \kappa > x_0$, $\rho(f_i(x_\kappa), f(x)) < \epsilon$ for all x in X.

A net of functions $\mathcal{F} = \{f_i\}_{i=2}$ from x to (Y_p) is said to be exhaustive at a point x_0 of X if for all $\epsilon > 0$ there an open set V containing the point x_0 and an i_0 in \mathcal{J} such that for all x in V and $i > i_0 \rho((x_0), f_i(x) < \epsilon$. The net \mathcal{F} is said to be exhaustive if it is exhaustive for all points of X. It is shown that if $(X, d), (Y, \rho)$ are metric spaces and $\{f_n\}$ is a function from X to Y, then f_n converges to the function of if and only if $\{f_n\}$ converges pointwise to f and $\{f_n\}$ is exhaustive. If $(X, d), (Y, \rho)$ are metric spaces \mathcal{F} is a family of functions from X to Y it is proved that \mathcal{F} is equicontinuous at a point x in X if and only if \mathcal{F} is exhaustive at x and each function f in \mathcal{F} is continuous at x. The following generalized Ascoli theorem is proved: If X is a compact metric space and \mathcal{F} is an infinite closed bounded and exhaustive subset of Bd(X), the space of bounded real valued functions on X with the supremum norm, then \mathcal{F} is compact, in the topology of Bd(X).