Let $T = (\tau_{nk})$ and $U = (u_{nk})$ denote triangular matrices representing series to sequence transformations, and let $\lambda = \{\lambda_n\}$ denote a rate that is a positive sequence. The series $\sum u_k$ is said to be T^{λ} - summable to t if $\lim_n \sum_{k \leq n} \tau_{n|k|} u_k = t$ exists and

$$\begin{split} \lambda_n |\sum_{|k| \leq n} \tau_{n|k|} u_k - t| \text{ is bounded. The space } L_{T_{\lambda}}^p \text{ consists of all functions } f \text{ in the Lebesgue space } L^p([0, 2\pi]) \text{ such that } \lambda_n \|\tau_n f - f\|_p \text{ is bounded, where } \tau_n f \text{ represents the quantity} \\ \sum_{|k| \leq n} \tau_{n|k|} c_k \exp ikx \text{ and } \{c_k\} \text{ are the Fourier coefficients of the function } f; \text{ the space } \mathcal{L}_{T_{\lambda}}^p \end{split}$$

consists of all functions f such that $\lambda_n \|\tau_n\|_p$ is bounded, where for each n, γ_n denotes the function $\sum_{|k| \le n} \tau_{n|k|} c_k \exp ikx$ with the norm $\|f\|_{L^p_{T_\lambda}} = \|f\|_p + \sup \lambda_n \|\tau_n f - f\|_p L^p_{T_\lambda}$ is a

normed linear complete space; as is the space $\mathcal{L}_{T_{\lambda}}^{p}$ with the norm $\|f\|_{\mathcal{L}_{T_{\lambda}}^{p}} = \lambda_{n} \|\tau_{n}\|_{p} \mathcal{L}_{T_{\lambda}}^{p}$. It is proved that for a rate λ , p > 1, q > 1, the function f with Fourier series $\sum_{k=-\infty}^{\infty} c_{k} \exp ikx$ is in $\mathcal{L}_{T_{\lambda}}^{p}$ if and only if, for each g in L^{q} with Fourier series $\sum d_{k} \exp ikx$, the

series $\sum_{k=-\infty}^{\infty} c_k d_{-k}$ is T^{λ} summable to zero, where q = p/p - 1. If λ is a non-decreasing rate p > 1, q = p/(p-1), and series to sequence matrix satisfies the condition that $\|\tau_n f - f\|_p$ tends to zero for all functions $f \sim \sum c_k \exp ik\theta$ in L^p , the f is in $L_{T^{\lambda}}^p$ if and only if, for each function g in L^q with Fourier series $\sum_{k=-\infty}^{\infty} d_k \exp ikx$, the series $\sum_{k=\infty}^{\infty} c_k d_{-k}$ is T^{λ} summable. If λ is a nondecreasing rate p and p_1 are greater than $1 \ q = p/(p-1)$, $q_1 = p_1/(p_1-1)$ and the sequence $\epsilon = \{\epsilon_k\}$ is a multiplier from the space $L^{p_1}_{T^{\lambda}}$ to the space $L^p_{T^{\lambda}}$; if the matrix T satisfies the condition $\lim \|\tau_n f - f\|_p = 0$ for all f in L^p , then ϵ is a multiplier from the space $L_{T^{\lambda}}^p$.