Let $T=\left(\tau_{n k}\right)$ and $U=\left(u_{n k}\right)$ denote triangular matrices representing series to sequence transformations, and let $\lambda=\left\{\lambda_{n}\right\}$ denote a rate that is a positive sequence. The series $\sum u_{k}$ is said to be $T^{\lambda}$ - summable to $t$ if $\lim _{n} \sum_{k \leq n} \tau_{n|k|} u_{k}=t$ exists and
$\lambda_{n}\left|\sum_{|k| \leq n} \tau_{n|k|} u_{k}-t\right|$ is bounded. The space $L_{T_{\lambda}}^{p}$ consists of all functions $f$ in the Lebesgue space $L^{\bar{p}}([0,2 \pi])$ such that $\lambda_{n}\left\|\tau_{n} f-f\right\|_{p}$ is bounded, where $\tau_{n} f$ represents the quantity $\sum_{|k| \leq n} \tau_{n|k|} c_{k} \exp i k x$ and $\left\{c_{k}\right\}$ are the Fourier coefficients of the function $f$; the space $\mathcal{L}_{T_{\lambda}}^{p}$ consists of all functions $f$ such that $\lambda_{n}\left\|\tau_{n}\right\|_{p}$ is bounded, where for each $n, \gamma_{n}$ denotes the function $\sum_{|k| \leq n} \tau_{n|k|} c_{k} \exp i k x$ with the norm $\|f\|_{L_{T_{\lambda}}^{p}}=\|f\|_{p}+\sup \lambda_{n}\left\|\tau_{n} f-f\right\|_{p} L_{T_{\lambda}}^{p}$ is a normed linear complete space; as is the space $\mathcal{L}_{T_{\lambda}}^{p}$ with the norm $\|f\|_{\mathcal{L}_{T_{\lambda}}^{p}}=\lambda_{n}\left\|\tau_{n}\right\|_{p} \mathcal{L}_{T_{\lambda}}^{p}$. It is proved that for a rate $\lambda, p>1, q>1$, the function $f$ with Fourier series $\sum_{k=-\infty}^{\infty} c_{k} \exp i k x$ is in $\mathcal{L}_{T_{\lambda}}^{p}$ if and only if, for each $g$ in $L^{q}$ with Fourier series $\sum d_{k} \exp i k x$, the series $\sum_{k=-\infty}^{\infty} c_{k} d_{-k}$ is $T^{\lambda}$ summable to zero, where $q=p / p-1$. If $\lambda$ is a non-decreasing rate $p>1, q=p /(p-1)$, and series to sequence matrix satisfies the condition that $\left\|\tau_{n} f-f\right\|_{p}$ tends to zero for all functions $f \sim \sum c_{k} \exp i k \theta$ in $L^{p}$, the $f$ is in $L_{T^{\lambda}}^{p}$ if and only if, for each function $g$ in $L^{q}$ with Fourier series $\sum_{k=-\infty}^{\infty} d_{k} \exp i k x$, the series $\sum_{k=\infty}^{\infty} c_{k} d_{-k}$ is $T^{\lambda}$ summable. If $\lambda$ is a nondecreasing rate $p$ and $p_{1}$ are greater than $1 q=p /(p-1), q_{1}=p_{1} /\left(p_{1}-1\right)$ and the sequence $\epsilon=\left\{\epsilon_{k}\right\}$ is a multiplier from the space $L^{q}$ to the space $L^{q_{1}}$, then the sequence $\left\{\epsilon_{k}\right\}$ is a multiplier from the space $\mathcal{L}_{T^{\lambda}}^{p_{1}}$ to the space $\mathcal{L}_{T^{\lambda}}^{p}$; if the matrix $T$ satisfies the condition $\lim \left\|\tau_{n} f-f\right\|_{p}=0$ for all $f$ in $L^{p}$, then $\epsilon$ is a multiplier from the space $L_{T^{\lambda}}^{p_{1}}$ to space $L_{T_{\lambda}}^{p}$.

