This is a review text file submitted electronically to MR.

Reviewer: George U. Brauer

Reviewer number: 003307

Address:

Math Dept. University of Minnesota Minneapolis, MN 55455 minette@math.umn.edu

Author: Stanojevic, Caslav V.

Short title: Slow oscillation in norm and structure of linear functionals

MR Number: 1 396 116-C

Primary classification:

Secondary classification(s): 46B99 42A16

Review text:

The concept of slow oscillation and moderate divergence are extended to linear topological space. If $x = \{x_n\}$ is a sequence of elements in a linear topological space B, and $S_n(x) =$ $\sum_{k=1}^{n} x_k$ are the partial sums of the series $\sum x_k$, then for each linear functional Φ on B the sequence $\{S_n(x)\}$ is said to be Φ -slowly oscillating if $\lim |\Phi(S_N(x)) - \Phi(S_N(x))| = 0$ as M, Ntend to infinity, N > M, N/M tends to one. If the sequence $\{S_n(x)\}$ is Φ -slowly oscillating for each functional Φ in the dual B^* of B, then the sequence $\{S_n(x)\}$ is said to be weaklyslowly oscillating. If B is normed and $\lim ||S_N(x) - S_M(x)|| = 0$ as M, N tend to infinity N > M, N/M tends to one, then $\{S_n(x)\}$ is said to be slowly oscillating in norm. If B is normed then the sequence $\{S_n(x)\}$ is said to be moderately divergent if $||S_n(x)|| = o(n^{s-1})$ as n tends to infinity and $\sum_{n=0}^{\infty} \|S_n(x)\|/n^{-s} < \infty$ for s > 1. It is shown that if $\{S_n(x)\}$ is weakly slowly oscillating in B, then the series $\sum \Phi(x_n) \exp int/n$ is the Fourier series of a function in $L^2(0, 2\pi)$ for $r \ge 2$. if $\{S_n(x)\}$ is moderately divergent then for each functional Φ in B^* there is an absolutely convergent Fourier representing a function α_{ϕ} whose derivative $\alpha'_{\Phi'}$ is in L^r for $r \geq 2$; moreover the function α_{ϕ} satisfies the relation $\sum_{n=1}^{\infty} \Phi(x_n/n) \exp(\frac{1}{2} e^{-\frac{1}{2}} e$ i nt = $\alpha_{\Phi}(t) - i$ (1-exp). For each functional Φ in B^* the Fourier series $\sum_{n=1}^{\infty} \Phi(x_n) \exp(i\theta t)$ in t is absolutely convergent if and only if the quantities $\left\|\sum_{k=1}^{n} (exp \ iarg \ \Phi(x_k)) x_k\right\|$ are bounded.