This is a review text file submitted electronically to MR.

Reviewer: George U. Brauer

Reviewer number: 003307

Address:

Math Depart. University of Minnesota Minneapolis, MN 55455 minette@math.umn.edu

Author: Hoim, Terje, Turnpu, Heino

Short title: On summability in measure with speed

MR Number: 1 711 585-J

Primary classification:

Secondary classification(s): 40A30 46E30

Review text:

Let $\lambda = \{\lambda_n\}, \mu = \{\mu_n\}$ be two positive sequences increasing to infinity; such sequences are called speeds. A sequence of functions $\{f_n(t)\}\$ in the space M(a,b) of measurable functions on an interval [a, b] is said to be λ mes μ -convergent to f(t) on [a, b] if $\lim \lambda_n$ mes $\{t: \mu_n | f_n(t) - f(t)\} = \alpha\}$ exists for each positive number α ; if $\mu_n = 1$ for each n, then the sequence $\{f_n\}$ is said to be λ mes convergent to f(t). The sequence is said to be mes λ -convergent to f if for each positive number $\alpha lim_{n\to\infty}$ mes $\{t: \lambda_n | f_n(t) - f(t) | \ge \alpha\} = 0$, if $\lambda_n = 1$ for each n the sequence $\{f_n(t)\}$ converges in measure to f(t). The set of mes λ -convergent (λ mes-convergent, λ mes μ -convergent) sequences in M(a, b) is denoted by $c_{mes\lambda}(c_{\lambda mes}, c_{\lambda mes\mu})$; the set of sequences mes λ -convergent, λ mes convergent, λ mes μ convergent to 0) is denoted by $c^o_{mes\lambda}(c^o_{\lambda mes}, c^o_{\lambda mes\mu})$. The set of λ -convergent sequences is denoted by c^{λ} . If the sequence $\{f_n\}$ is mes λ -convergent (λ mes-convergent, λ mes μ convergent, μ mes λ -convergent, λ mes λ -convergent for each speed λ), then $\{f_n\}$ is said to be mes ∞ -convergent (∞ mes-convergent, ∞ mes μ -convergent, μ mes ∞ -convergent, ∞ mes ∞ -convergent). The symbol $c_{mes\infty}$ ($c_{\infty mes}, c_{\lambda mes\infty}, c_{\infty mes\lambda}, c_{\infty mes\infty}$) denotes the set of mes ∞ -convergent (∞ mes-convergent, λ mes ∞ -convergent ∞ mes λ -convergent, ∞ mes ∞ -convergent) sequences in M(a,b). It is shown that the sequence $\{f_n\}$ is in $c^o_{\lambda mes\infty}$ iff $\lim_{n \to \infty} \lambda_n$ mes (support f_n) = 0. The sequence $\{f_n\}$ is in $c^o_{\infty mes\infty}$ iff there exists a natural number n_0 such that for $n > n_0$ f(t) vanishes almost everywhere on [a, b].

Let $A = (a_{nk})$ be a summation matrix which transforms a sequence $\{f_n\}$ into a sequence $\{g_n\}$, where $\{g_n\} = A\{f\}_n = \{\sum_{n=0}^{\infty} a_{nk}f_k\}$. The matrix A transforms sequences in $c_{mes\infty}^o$ into sequences in $c_{\mu mes}^o$ iff there exists a natural number M such that $a_{nk} = 0$ for n > M, k > M. The matrix A transforms sequences in $c_{mes\lambda}$ into sequences in $c_{mes\mu}^o$ iff it transforms sequences in c^{λ} into sequences in c^{μ} and there exists a natural number L such that each row of A has less than L non-zero elements.