This is a review text file submitted electronically to MR.
Reviewer: George U. Brauer
Reviewer number: 003307
Address:
Math Depart.
University of Minnesota
Minneapolis, MN 55455
minette@math.umn.edu
Author: Hoim, Terje, Turnpu, Heino
Short title: On summability in measure with speed
MR Number: 1711 585-J

Primary classification:

Secondary classification(s): 40A30 46E30

Review text:

Let $\lambda=\left\{\lambda_{n}\right\}, \mu=\left\{\mu_{n}\right\}$ be two positive sequences increasing to infinity; such sequences are called speeds. A sequence of functions $\left\{f_{n}(t)\right\}$ in the space $M(a, b)$ of measurable functions on an interval $[a, b]$ is said to be λ mes μ-convergent to $f(t)$ on $[a, b]$ if $\lim _{n \rightarrow \infty} \lambda_{n}$ mes $\left.\left\{t: \mu_{n} \mid f_{n}(t)-f(t)\right\}=\alpha\right\}$ exists for each positive number α; if $\mu_{n}=1$ for each n, then the sequence $\left\{f_{n}\right\}$ is said to be λ mes convergent to $f(t)$. The sequence is said to be mes λ-convergent to f if for each positive number $\alpha \lim _{n \rightarrow \infty}$ mes $\left\{t: \lambda_{n}\left|f_{n}(t)-f(t)\right| \geq \alpha\right\}=0$, if $\lambda_{n}=1$ for each n the sequence $\left\{f_{n}(t)\right\}$ converges in measure to $f(t)$. The set of mes λ-convergent (λ mes-convergent, λ mes μ-convergent) sequences in $M(a, b)$ is denoted by $c_{m e s \lambda}\left(c_{\lambda m e s}, c_{\lambda m e s \mu}\right)$; the set of sequences mes λ-convergent, λ mes convergent, λ mes μ convergent to 0) is denoted by $c_{\text {mes } \lambda}^{o}\left(c_{\lambda \text { mes }}^{o}, c_{\lambda \text { mes } \mu}^{o}\right)$. The set of λ-convergent sequences is denoted by c^{λ}. If the sequence $\left\{f_{n}\right\}$ is mes λ-convergent $(\lambda$ mes-convergent, λ mes μ convergent, μ mes λ-convergent, λ mes λ-convergent for each speed λ), then $\left\{f_{n}\right\}$ is said to be mes ∞-convergent (∞ mes-convergent, ∞ mes μ-convergent, μ mes ∞-convergent, ∞ mes ∞-convergent). The symbol $c_{m e s \infty}\left(c_{\infty m e s}, c_{\lambda m e s \infty}, c_{\infty m e s \lambda}, c_{\infty m e s \infty}\right)$ denotes the set of mes ∞-convergent (∞ mes-convergent, λ mes ∞-convergent ∞ mes λ-convergent, ∞ mes ∞-convergent) sequences in $M(a, b)$. It is shown that the sequence $\left\{f_{n}\right\}$ is in $c_{\lambda m e s \infty}^{o}$ iff $\lim _{n \rightarrow \infty} \lambda_{n}$ mes (support f_{n}) $=0$. The sequence $\left\{f_{n}\right\}$ is in $c_{\infty m e s \infty}^{o}$ iff there exists a natural number n_{0} such that for $n>n_{0} f(t)$ vanishes almost everywhere on $[a, b]$.

Let $A=\left(a_{n k}\right)$ be a summation matrix which transforms a sequence $\left\{f_{n}\right\}$ into a sequence $\left\{g_{n}\right\}$, where $\left\{g_{n}\right\}=A\{f\}_{n}=\left\{\sum_{n=0}^{\infty} a_{n k} f_{k}\right\}$. The matrix A transforms sequences in $c_{\text {mes } \infty}^{o}$ into sequences in $c_{\mu m e s}^{o}$ iff there exists a natural number M such that $a_{n k}=0$ for $n>M$, $k>M$. The matrix A transforms sequences in $c_{m e s \lambda}$ into sequences in $c_{m e s \mu}$ iff it transforms sequences in c^{λ} into sequences in c^{μ} and there exists a natural number L such that each row of A has less than L non-zero elements.

